We study theoretically the physical properties of Rouse polymers when a subset of monomers along the backbone is subjected to an additional driving force of exponentially correlated fluctuating noise. In other words, the polymers are made up of two kinds of particle, one of which has an additional coupling to an active bath that subjects those particles to extra forces. We analyze properties of these active polymers, such as the end to end distance and the local structure induced by active kicks. We then proceed to quantify how the dynamics of such polymers depend on the proportion of monomers which are being actively driven, and show how the dynamics transitions from the normal Rouse like behavior to substantially faster dynamics. Finally we analyze some of the non-equilibrium properties induced in these systems, such as the irreversibility.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
, reprint ed. (
Clarendon Press
,
1988
), illustrated.
2.
H.
Lwen
, “
Active colloidal molecules
,”
Europhys. Lett.
121
(
5
),
58001
(
2018
).
3.
N.
Samanta
and
R.
Chakrabarti
, “
Chain reconfiguration in active noise
,”
J. Phys. A: Math. Theor.
49
(
19
),
195601
(
2016
).
4.
D.
Osmanovi
and
Y.
Rabin
, “
Dynamics of active Rouse chains
,”
Soft Matter
13
(
5
),
963
968
(
2017
).
5.
H.
Vandebroek
and
C.
Vanderzande
, “
Dynamics of a polymer in an active and viscoelastic bath
,”
Phys. Rev. E
92
(
6
),
060601
(
2015
).
6.
T.
Sakaue
and
T.
Saito
, “
Active diffusion of model chromosomal loci driven by athermal noise
,”
Soft Matter
13
(
1
),
81
87
(
2016
).
7.
A.
Ghosh
and
N. S.
Gov
, “
Dynamics of active semiflexible polymers
,”
Biophys. J.
107
(
5
),
1065
1073
(
2014
).
8.
T.
Eisenstecken
,
G.
Gompper
, and
R. G.
Winkler
, “
Internal dynamics of semiflexible polymers with active noise
,”
J. Chem. Phys.
146
(
15
),
154903
(
2017
).
9.
A.
Zidovska
,
D. A.
Weitz
, and
T. J.
Mitchison
, “
Micron-scale coherence in interphase chromatin dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
39
),
15555
15560
(
2013
).
10.
I.
Bronshtein
,
E.
Kepten
,
I.
Kanter
,
S.
Berezin
,
M.
Lindner
,
A. B.
Redwood
,
S.
Mai
,
S.
Gonzalo
,
R.
Foisner
,
Y.
Shav-Tal
, and
Y.
Garini
, “
Loss of lamin a function increases chromatin dynamics in the nuclear interior
,”
Nat. Commun.
6
,
8044
(
2015
).
11.
M.
Di Pierro
,
D. A.
Potoyan
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
30
),
7753
7758
(
2018
).
12.
J.
Gladrow
,
N.
Fakhri
,
F. C.
MacKintosh
,
C. F.
Schmidt
, and
C. P.
Broedersz
, “
Broken detailed balance of filament dynamics in active networks
,”
Phys. Rev. Lett.
116
(
24
),
248301
(
2016
).
13.
R.
Bruinsma
,
A. Y.
Grosberg
,
Y.
Rabin
, and
A.
Zidovska
, “
Chromatin hydrodynamics
,”
Biophys. J.
106
(
9
),
1871
1881
(
2014
).
14.
R. G.
Winkler
,
J.
Elgeti
, and
G.
Gompper
, “
Active polymers—Emergent conformational and dynamical properties: A brief review
,”
J. Phys. Soc. Jpn.
86
(
10
),
101014
(
2017
).
15.
N.
Ganai
,
S.
Sengupta
, and
G. I.
Menon
, “
Chromosome positioning from activity-based segregation
,”
Nucleic Acids Res.
42
(
7
),
4145
4159
(
2014
).
16.
A. Y.
Grosberg
and
J.-F.
Joanny
, “
Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats
,”
Phys. Rev. E
92
(
3
),
032118
(
2015
).
17.
C.
Sandford
,
A. Y.
Grosberg
, and
J.-F.
Joanny
, “
Pressure and flow of exponentially self-correlated active particles
,”
Phys. Rev. E
96
(
5
),
052605
(
2017
).
18.
F.
Gnesotto
,
F.
Mura
,
J.
Gladrow
, and
C.
Broedersz
, “
Broken detailed balance and non-equilibrium dynamics in living systems: A review
,”
Rep. Prog. Phys.
81
(
6
),
066601
(
2018
).
19.
D.
Loi
,
S.
Mossa
, and
F. L.
Cugliandolo
, “
Non-conservative forces and effective temperatures in active polymers
,”
Soft Matter
7
(
21
),
10193
(
2011
).
20.
A.
Kaiser
,
S.
Babel
,
B.
ten Hagen
,
C.
von Ferber
, and
H.
Löwen
, “
How does a flexible chain of active particles swell?
,”
J. Chem. Phys.
142
(
12
),
124905
(
2015
).
21.
T.
Eisenstecken
,
G.
Gompper
, and
R.
Winkler
, “
Conformational properties of active semiflexible polymers
,”
Polymers
8
(
8
),
304
(
2016
).
22.
M.
Tark-Dame
,
R.
van Driel
, and
D. W.
Heermann
, “
Chromatin folding–from biology to polymer models and back
,”
J. Cell Sci.
124
(
6
),
839
845
(
2011
).
23.
A.
Tajik
,
Y.
Zhang
,
F.
Wei
,
J.
Sun
,
Q.
Jia
,
W.
Zhou
,
R.
Singh
,
N.
Khanna
,
A. S.
Belmont
, and
N.
Wang
, “
Transcription upregulation via force-induced direct stretching of chromatin
,”
Nat. Mater.
15
(
12
),
1287
1296
(
2016
).
24.
J. B.
Weiss
, “
Fluctuation properties of steady-state Langevin systems
,”
Phys. Rev. E
76
(
6
),
061128
(
2007
).
25.
J.
Prost
,
J.-F.
Joanny
, and
J. M. R.
Parrondo
, “
Generalized fluctuation-dissipation theorem for steady-state systems
,”
Phys. Rev. Lett.
103
(
9
),
090601
(
2009
).
26.
P. T.
Underhill
and
P. S.
Doyle
, “
On the coarse-graining of polymers into bead-spring chains
,”
J. Non-Newtonian Fluid Mech.
122
(
1-3
),
3
31
(
2004
).

Supplementary Material

You do not currently have access to this content.