Using molecular dynamics simulations, we assess the uniaxial deformation response of ice Ih as described by two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we investigate the response to both tensile and compressive uniaxial deformations along the [0001] and [01¯10] crystallographic directions for a series of different temperatures. We classify the respective failure mechanisms and assess their sensitivity to strain rate and cell size. While the TIP4P/Ice model fails by either brittle cleavage under tension at low temperatures or large-scale amorphization/melting, the mW potential behaves in a much more ductile manner, displaying numerous cases in which stress relief involves the nucleation and subsequent activity of lattice dislocations. Indeed, the fact that mW behaves in such a malleable manner even at strain rates that are substantially higher than those applied in typical experiments indicates that the mW description of ice Ih is excessively ductile. One possible contribution to this enhanced malleability is the absence of explicit protons in the mW model, disregarding the fundamental asymmetry of the hydrogen bond that plays an important role in the nucleation and motion of lattice dislocations in ice Ih.

1.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
New York
,
1999
).
3.
E.
Schulson
and
P.
Duval
,
Creep and Fracture of Ice
(
Cambridge University Press
,
2009
).
5.
J.
Glen
and
M.
Perutz
,
J. Glaciol.
2
,
397
(
1954
).
6.
J.
Currier
and
E.
Schulson
,
Acta Metall.
30
,
1511
(
1982
).
7.
M. A.
Lange
and
T. J.
Ahrens
,
J. Geophys. Res.
88
,
1197
, https://doi.org/10.1029/jb088ib02p01197 (
1983
).
9.
S. J.
Jones
,
J. Phys. Chem. B
101
,
6099
(
1997
).
10.
J.
Dempsey
,
R.
Adamson
, and
S.
Mulmule
,
Int. J. Fract.
95
,
347
(
1999
).
11.
E. M.
Schulson
,
Eng. Fract. Mech.
68
,
1839
(
2001
).
12.
S. J.
Jones
,
R. E.
Gagnon
,
A.
Derradji
, and
A.
Bugden
,
Can. J. Phys.
81
,
191
(
2003
).
13.
P. K.
Dutta
,
D. M.
Cole
,
E. M.
Schulson
,
D. S.
Sodhi
 et al.,
Int. J. Offshore Polar Eng.
14
,
182
(
2004
).
14.
H.
Kim
and
J. N.
Keune
,
J. Mater. Sci.
42
,
2802
(
2007
).
15.
M.
Shazly
,
V.
Prakash
, and
B. A.
Lerch
,
Int. J. Solids Struct.
46
,
1499
(
2009
).
16.
A.
Combescure
,
Y.
Chuzel-Marmot
, and
J.
Fabis
,
Int. J. Solids Struct.
48
,
2779
(
2011
).
17.
T.
Sain
and
R.
Narasimhan
,
Int. J. Solids Struct.
48
,
817
(
2011
).
18.
X.
Wu
and
V.
Prakash
,
Cold Reg. Sci. Technol.
118
,
1
(
2015
).
19.
J.
Pernas-Sánchez
,
D. A.
Pedroche
,
D.
Varas
,
J.
López-Puente
, and
R.
Zaera
,
Int. J. Solids Struct.
49
,
1919
(
2012
).
20.
J.
Pernas-Sánchez
,
J. A.
Artero-Guerrero
,
D.
Varas
, and
J.
López-Puente
,
Exp. Mech.
55
,
1669
(
2015
).
21.
C.
Qi
,
J.
Lian
,
Q.
Ouyang
, and
X.
Zhao
,
Lat. Am. J. Solids Struct.
14
,
1669
(
2017
).
22.
D. L.
Silva Junior
and
M.
de Koning
,
Phys. Rev. B
85
,
024119
(
2012
).
23.
S.
Ahmad
,
M.
Ohtomo
, and
R. W.
Whitworth
,
Nature
319
,
659
(
1986
).
24.
S.
Ahmad
and
R. W.
Whitworth
,
Philos. Mag. A
57
,
749
(
1988
).
25.
C.
Shearwood
and
R. W.
Whitworth
,
Philos. Mag. A
64
,
289
(
1991
).
26.
C.
Shearwood
and
R.
Whitworth
,
Acta Metall. Mater.
41
,
205
(
1993
).
27.
J.
Kacher
and
I. M.
Robertson
,
Philos. Mag.
96
,
1437
(
2016
).
28.
L. A.
Zepeda-Ruiz
,
A.
Stukowski
,
T.
Oppelstrup
, and
V. V.
Bulatov
,
Nature
550
,
492
(
2017
).
29.
M. S.
Duesbery
and
G. Y.
Richardson
,
Crit. Rev. Solid State Mater. Sci.
17
,
1
(
1991
).
30.
V. V.
Bulatov
,
J. F.
Justo
,
W.
Cai
,
S.
Yip
,
A. S.
Argon
,
T.
Lenosky
,
M.
de Koning
, and
T.
Diaz de la Rubia
,
Philos. Mag. A
81
,
1257
(
2001
).
31.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
32.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
33.
C.
Vega
,
J. L. F.
Abascal
,
E.
Sanz
,
L. G.
MacDowell
, and
C.
McBride
,
J. Phys.: Condens. Matter
17
,
S3283
(
2005
).
34.
R.
García Fernández
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
124
,
144506
(
2006
).
35.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
36.
R.
Handel
,
R. L.
Davidchack
,
J.
Anwar
, and
A.
Brukhno
,
Phys. Rev. Lett.
100
,
036104
(
2008
).
37.
Y.
Liu
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Chem. Phys.
131
,
104508
(
2009
).
38.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2009
).
39.
L. G.
MacDowell
and
C.
Vega
,
J. Phys. Chem. B
114
,
6089
(
2010
).
40.
N.
Kastelowitz
,
J. C.
Johnston
, and
V.
Molinero
,
J. Chem. Phys.
132
,
124511
(
2010
).
41.
J. L.
Aragones
,
L. G.
MacDowell
, and
C.
Vega
,
J. Phys. Chem. A
115
,
5745
(
2011
).
42.
D. T.
Limmer
and
D.
Chandler
,
J. Chem. Phys.
135
,
134503
(
2011
).
43.
E. B.
Moore
and
V.
Molinero
,
Nature
479
,
506
(
2011
).
44.
E. B.
Moore
and
V.
Molinero
,
Phys. Chem. Chem. Phys.
13
,
20008
(
2011
).
45.
J. C.
Johnston
and
V.
Molinero
,
J. Am. Chem. Soc.
134
,
6650
(
2012
).
46.
Y.
Liu
,
J. C.
Palmer
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Chem. Phys.
137
,
214505
(
2012
).
47.
T. D.
Shepherd
,
M. A.
Koc
, and
V.
Molinero
,
J. Phys. Chem. C
116
,
12172
(
2012
).
48.
D. T.
Limmer
and
D.
Chandler
,
J. Chem. Phys.
138
,
214504
(
2013
).
49.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
,
J. Am. Chem. Soc.
135
,
15008
(
2013
).
50.
A. H.
Nguyen
and
V.
Molinero
,
J. Phys. Chem. B
119
,
9369
(
2015
).
51.
A.
Zaragoza
,
M. M.
Conde
,
J. R.
Espinosa
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
,
J. Chem. Phys.
143
,
134504
(
2015
).
52.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
,
Chem. Rev.
116
,
7501
(
2016
).
53.
J. R.
Espinosa
,
A.
Zaragoza
,
P.
Rosales-Pelaez
,
C.
Navarro
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
,
Phys. Rev. Lett.
117
,
135702
(
2016
).
54.
J. R.
Espinosa
,
C.
Navarro
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
,
J. Chem. Phys.
145
,
211922
(
2016
).
55.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
,
J. Phys. Chem. C
120
,
8068
(
2016
).
56.
L.
Lupi
,
A.
Hudait
,
B.
Peters
,
M.
Grünwald
,
R.
Gotchy Mullen
,
A. H.
Nguyen
, and
V.
Molinero
,
Nature
551
,
218
(
2017
).
57.
J.
Gelman Constantin
,
M. A.
Carignano
,
H. R.
Corti
, and
I.
Szleifer
,
J. Phys. Chem. C
119
,
27118
(
2015
).
58.
J.
Wu
,
F.
Ning
,
T. T.
Trinh
,
S.
Kjelstrup
,
T. J. H.
Vlugt
,
J.
He
,
B. H.
Skallerud
, and
Z.
Zhang
,
Nat. Commun.
6
,
8743
(
2015
).
59.
S. H.
Min
and
M. L.
Berkowitz
,
J. Chem. Phys.
148
,
144504
(
2018
).
60.
W. L.
Jorgensen
and
J. D.
Madura
,
Mol. Phys.
56
,
1381
(
1985
).
61.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
62.
J. A.
Hayward
and
J. R.
Reimers
,
J. Chem. Phys.
106
,
1518
(
1997
).
63.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
57
,
4009
(
1972
).
64.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
65.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
66.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
67.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
68.
T.
Schneider
and
E.
Stoll
,
Phys. Rev. B
17
,
1302
(
1978
).
69.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
70.
R. W.
Hockney
,
Computer Simulation Using Particles
(
Taylor & Francis Group
,
2017
).
71.
P. H.
Gammon
,
H.
Kiefte
, and
M. J.
Clouter
,
J. Phys. Chem.
87
,
4025
(
1983
).
72.
E.
Maras
,
O.
Trushin
,
A.
Stukowski
,
T.
Ala-Nissila
, and
H.
Jönsson
,
Comput. Phys. Commun.
205
,
13
(
2016
).
73.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
74.
A.
Stukowski
,
V. V.
Bulatov
, and
A.
Arsenlis
,
Modell. Simul. Mater. Sci. Eng.
20
,
085007
(
2012
).
75.
A.
Berghezan
,
A.
Fourdeux
, and
S.
Amelinckx
,
Acta Metall.
9
,
464
(
1961
).
76.
D.
Hull
and
D.
Bacon
,
Introduction to Dislocations
(
Butterworth-Heinemann
,
2001
).
77.
M. A.
Rist
,
J. Phys. Chem. B
101
,
6263
(
1997
).
78.
J.
Glen
,
Phys. Kondens. Mater.
7
,
43
(
1968
).
You do not currently have access to this content.