Hydrogen adsorption on Pt(111) has been actively studied using semilocal approximations within the density functional theory featuring simultaneous adsorption of hydrogen on multiple sites, i.e., fcc, atop, and hcp. Considering the accuracy needed to detail the feature, we revisit this problem with the help of higher level of theory, the adiabatic connection fluctuation dissipation theorem within the random phase approximation. Our simulation emphasizes important roles played by the equilibrium lattice parameter of the surface, mass of the hydrogen isotope, and hydrogen coverage. The insight acquired in this study provides a way to consistently interpret electrochemical and spectroscopic data.

1.
B.
Hammer
and
J. K.
Nørskov
, “
Electronic factors determining the reactivity of metal surfaces
,”
Surf. Sci.
343
,
211
220
(
1995
).
2.
N. M.
Marković
and
P. N.
Ross
, Jr.
, “
Surface science studies of model fuel cell electrocatalysts
,”
Surf. Sci. Rep.
45
,
117
229
(
2002
).
3.
G.
Jerkiewicz
, “
Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen
,”
Electrocatalysis
1
,
179
199
(
2010
).
4.
A. R.
Zeradjanin
,
J. P.
Grote
,
G.
Polymeros
, and
K. J. J.
Mayrhofer
, “
A critical review on hydrogen evolution electrocatalysis: Re-exploring the volcano-relationship
,”
Electroanalysis
28
,
2256
2269
(
2016
).
5.
D.
Strmcnik
,
D.
Tripkovic
,
D.
van der Vliet
,
V.
Stamenkovic
, and
N. M.
Marković
, “
Adsorption of hydrogen on Pt(111) and Pt(100) surfaces and its role in the HOR
,”
Electrochem. Commun.
10
,
1602
1605
(
2008
).
6.
A.
Peremans
and
A.
Tadjeddine
, “
Electrochemical deposition of hydrogen on platinum single crystals studied by infrared-visible sum-frequency generation
,”
J. Chem. Phys.
103
,
7197
(
1995
).
7.
Ş.
Bădescu
,
P.
Salo
,
T.
Ala-Nissila
,
S. C.
Ying
,
K.
Jacobi
,
Y.
Wang
,
K.
Bedürftig
, and
G.
Ertl
, “
Energetics and vibrational states for hydrogen on Pt(111)
,”
Phys. Rev. Lett.
88
,
136101
(
2002
).
8.
I.
Hamada
and
Y.
Morikawa
, “
Density-functional analysis of hydrogen on Pt(111): Electric field, solvent, and coverage effects
,”
J. Phys. Chem. C
112
,
10889
10898
(
2008
).
9.
P. J.
Feibelman
, “
First-principles calculations of stress induced by gas adsorption on Pt(111)
,”
Phys. Rev. B
56
,
2175
(
1997
).
10.
G.
Källén
and
G.
Wahnström
, “
Quantum treatment of H adsorbed on a Pt(111) surface
,”
Phys. Rev. B
65
,
033406
(
2001
).
11.
L.
Kristinsdov́ttir
and
E.
Skuv́lason
, “
A systematic DFT study of hydrogen diffusion on transition metal surfaces
,”
Surf. Sci.
606
,
1400
1404
(
2012
).
12.
A. P.
Jardine
,
E. Y. M.
Lee
,
D. J.
Ward
,
G.
Alexandrowicz
,
H.
Hedgeland
,
W.
Allison
,
J.
Ellis
, and
E.
Pollak
, “
Determination of the quantum contribution to the activated motion of hydrogen on a metal surface: H/Pt(111)
,”
Phys. Rev. Lett.
105
,
136101
(
2010
).
13.
S.
Gautier
,
S. N.
Steinmann
,
C.
Michel
,
P.
Fleurat-Lessard
, and
P.
Sautet
, “
Molecular adsorption at Pt(111). How accurate are DFT functionals?
,”
Phys. Chem. Chem. Phys.
17
,
28921
28930
(
2015
).
14.
T. L.
Tan
,
L.-L.
Wang
,
D. D.
Johnson
, and
K.
Bai
, “
Hydrogen deposition on Pt(111) during electrochemical hydrogen evolution from a first-principles multiadsorption-site study
,”
J. Phys. Chem. C
117
,
22696
22704
(
2013
).
15.
T. T. T.
Hanh
,
Y.
Takimoto
, and
O.
Sugino
, “
First-principles thermodynamic description of hydrogen electroadsorption on the Pt(111) surface
,”
Surf. Sci.
625
,
104
111
(
2014
).
16.
L.
Schimka
,
J.
Harl
,
A.
Stroppa
,
A.
Grüneis
,
M.
Marsman
,
F.
Mittendorfer
, and
G.
Kresse
, “
Accurate surface and adsorption energies from many-body perturbation theory
,”
Nat. Mater.
9
,
741
744
(
2010
).
17.
R.
Gomez
,
J. M.
Orts
,
B.
Alverez-Ruiz
, and
J. M.
Feliu
, “
Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4
,”
J. Phys. Chem. B
108
,
228
238
(
2004
).
18.
A.
Lasia
, “
Modeling of hydrogen upd isotherms
,”
J. Electroanal. Chem.
562
,
23
31
(
2004
).
19.
D. C.
Langreth
and
J. P.
Perdew
, “
Exchange-correlation energy of a metallic surface: Wave-vector analysis
,”
Phys. Rev. B
15
,
2884
(
1977
).
20.
T.
Miyake
,
F.
Aryasetiawan
,
T.
Kotani
,
M.
van Schilfgaarde
,
M.
Usuda
, and
K.
Terakura
, “
Total energy of solids: An exchange and random-phase approximation correlation study
,”
Phys. Rev. B
66
,
245103
(
2002
).
21.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
, “
Time-dependent density functional theory: Past, present, and future
,”
J. Chem. Phys.
122
,
094116
(
2005
).
22.
F.
Furche
, “
Developing the random phase approximation into a practical post-Kohn–Sham correlation model
,”
J. Chem. Phys.
129
,
114105
(
2008
).
23.
L.
Schimka
,
R.
Gaudoin
,
J.
Klimeš
,
M.
Marsman
, and
G.
Kresse
, “
Lattice constants and cohesive energies of alkali, alkaline-earth, and transition metals: Random phase approximation and density functional theory results
,”
Phys. Rev. B
87
,
214102
(
2013
).
24.
J.
Harl
,
L.
Schimka
, and
G.
Kresse
, “
Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids
,”
Phys. Rev. B
81
,
115126
(
2010
).
25.
J.
Harl
and
G.
Kresse
, “
Accurate bulk properties from approximate many-body techniques
,”
Phys. Rev. Lett.
103
,
056401
(
2009
).
26.
J. A. G.
Torres
,
B.
Ramberger
,
H. A.
Früchtl
,
R.
Schaub
, and
G.
Kresse
, “
Adsorption energies of benzene on close packed transition metal surfaces using the random phase approximation
,”
Phys. Rev. Mater.
1
,
060803
(
2017
).
27.
P. S.
Schmidt
and
K. S.
Thygesen
, “
Benchmark database of transition metal surface and adsorption energies from many-body perturbation theory
,”
J. Phys. Chem. C
122
,
4381
4390
(
2018
).
28.
X.
Ren
,
P.
Rinke
, and
M.
Scheffler
, “
Exploring the random phase approximation: Application to CO adsorbed on Cu(111)
,”
Phys. Rev. B
80
,
045402
(
2009
).
29.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Chemical accuracy for the van der Waals density functional
,”
J. Phys.: Condens. Matter
22
,
022201
(
2010
).
32.
I.
Hamada
, “
van der Waals density functional made accurate
,”
Phys. Rev. B
89
,
121103(R)
(
2014
).
33.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
34.
E.
Skúlv́ason
,
V.
Tripkovic
,
M. E.
Bjoärketun
,
S.
Gudmundsdotv́tir
,
G.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
H.
Jonv́sson
, and
J. K.
Norskov
, “
Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations
,”
J. Phys. Chem. C
114
,
18182
18197
(
2010
).
35.
Y.
Waseda
,
K.
Hirata
, and
M.
Ohtani
, “
High-temperature thermal expansion of platinum, tantalum, molybdenum, and tungsten measured by x-ray diffraction
,”
7
,
221
226
(
1975
).
36.
I. G.
Shuttleworth
, “
Controlled FCC/on-top binding of H/Pt(111) using surface stress
,”
Appl. Surf. Sci.
378
,
286
292
(
2016
).
37.
B.
Ramberger
,
T.
Schaäfer
, and
G.
Kresse
, “
Analytic interatomic forces in the random phase approximation
,”
Phys. Rev. Lett.
118
,
106403
(
2017
).
38.
K. M.
Lui
,
Y.
Kim
,
W. M.
Lau
, and
J. W.
Rabalais
, “
Quantitative determination of hydrogen adsorption site on the Pt(111)-(1×1) surface by low energy ion channeling
,”
Appl. Phys. Lett.
75
,
587
(
1999
).
39.
R.
Chattot
,
O.
Le Bacq
,
V.
Beermann
,
S.
Kuähl
,
J.
Herranz
,
S.
Henning
,
L.
Kuähn
,
T.
Asset
,
L.
Guev́taz
,
G.
Renou
 et al, “
Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis
,”
Nat. Mater.
17
,
827
833
(
2018
).
40.
M.
Hammerli
,
J. P.
Mislan
, and
W. J.
Olmstead
, “
Effect of overpotential on the temperature dependence of the electrolytic hydrogen-deuterium separation factor on platinum
,”
J. Electrochem. Soc.
117
,
751
757
(
1970
).
41.
S.
Shibuya
,
H.
Matsushima
, and
M.
Ueda
, “
Study of deuterium isotope separation by PEFC
,”
J. Electrochem. Soc.
163
,
F704
F707
(
2016
).
42.
S.
Sakong
,
M.
Naderian
,
K.
Mathew
,
R. G.
Hennig
, and
A.
Groß
, “
Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method
,”
J. Chem. Phys.
142
,
234107
(
2015
).

Supplementary Material

You do not currently have access to this content.