A detailed account of the Kohn–Sham (KS) algorithm from quantum chemistry, formulated rigorously in the very general setting of convex analysis on Banach spaces, is given here. Starting from a Levy–Lieb-type functional, its convex and lower semi-continuous extension is regularized to obtain differentiability. This extra layer allows us to rigorously introduce, in contrast to the common unregularized approach, a well-defined KS iteration scheme. Convergence in a weak sense is then proven. This generalized formulation is applicable to a wide range of different density-functional theories and possibly even to models outside of quantum mechanics.
REFERENCES
1.
P.
Hohenberg
and W.
Kohn
, Phys. Rev.
136
, B864
(1964
).2.
E. H.
Lieb
, Int. J. Quantum Chem.
24
, 243
(1983
).3.
W.
Kohn
and L. J.
Sham
, Phys. Rev.
140
, A1133
(1965
).4.
E.
Cancès
and C.
Le Bris
, Int. J. Quantum Chem.
79
, 82
(2000
).5.
E.
Cancès
, in Mathematical Models and Methods for Ab Initio Quantum Chemistry
, Volume 74 of Lecture Notes in Chemistry, edited by M.
Defranceschi
and C.
Le Bris
(Springer
, 2000
).6.
E.
Cancès
, J. Chem. Phys.
114
, 10616
(2001
).7.
L. O.
Wagner
, E. M.
Stoudenmire
, K.
Burke
, and S. R.
White
, Phys. Rev. Lett.
111
, 093003
(2013
).8.
S.
Kvaal
, U.
Ekström
, A. M.
Teale
, and T.
Helgaker
, J. Chem. Phys.
140
, 18A518
(2014
).9.
E. I.
Tellgren
, Phys. Rev. A
97
, 012504
(2018
).10.
11.
F. G.
Eich
, M.
Di Ventra
, and G.
Vignale
, J. Phys.: Condens. Matter
29
, 063001
(2016
).12.
K.
Pernal
and K. J. H.
Giesbertz
, in Density-Functional Methods for Excited States
, Volume 368 Topics in Current Chemistry, edited by N.
Ferré
, M.
Filatov
, and M.
Huix-Rotllant
(Springer
, 2015
).13.
14.
M.
Levy
, Proc. Natl. Acad. Sci. U. S. A.
76
, 6062
(1979
).15.
P. E.
Lammert
, Int. J. Quantum Chem.
107
, 1943
(2007
).16.
V.
Barbu
and T.
Precupanu
, Convexity and Optimization in Banach Spaces
, 4th ed. (Springer
, 2012
).17.
M. M.
Day
, Bull. Am. Math. Soc.
47
, 313
(1941
).18.
R. E.
Megginson
, Introduction to Banach Space Theory
(Springer
, 1998
).19.
P.
Blanchard
and E.
Brüning
, Mathematical Methods in Physics: Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics
, 2nd ed. (Birkhäuser
, 2015
).20.
S.
Kvaal
and T.
Helgaker
, J. Chem. Phys.
143
, 184106
(2015
).21.
P. E.
Lammert
, J. Math. Phys.
59
, 042110
(2018
).22.
N.
Hadjisavvas
and A.
Theophilou
, Phys. Rev. A
30
, 2183
(1984
).23.
A.
Laestadius
, J. Math. Chem.
52
, 2581
(2014
).24.
E. I.
Tellgren
, S.
Kvaal
, E.
Sagvolden
, U.
Ekström
, A. M.
Teale
and T.
Helgaker
, Phys. Rev. A
86
, 062506
(2012
).25.
A.
Laestadius
and M.
Benedicks
, Int. J. Quantum Chem.
114
, 782
(2014
).26.
E. I.
Tellgren
, A.
Laestadius
, T.
Helgaker
, S.
Kvaal
, and A. M.
Teale
, J. Chem. Phys.
148
, 024101
(2018
).27.
A.
Laestadius
, Int. J. Quantum Chem.
114
, 1445
(2014
).28.
M.
Ruggenthaler
, N.
Tancogne-Dejean
, J.
Flick
, H.
Appel
, and A.
Rubio
, Nat. Rev. Chem.
2
, 0118
(2018
).29.
H.
Spohn
, Dynamics of Charged Particles and Their Radiation Field
(Cambridge University Press
, 2004
).30.
L. H.
Ryder
, Quantum Field Theory
(Cambridge University Press
, 1996
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.