A detailed account of the Kohn–Sham (KS) algorithm from quantum chemistry, formulated rigorously in the very general setting of convex analysis on Banach spaces, is given here. Starting from a Levy–Lieb-type functional, its convex and lower semi-continuous extension is regularized to obtain differentiability. This extra layer allows us to rigorously introduce, in contrast to the common unregularized approach, a well-defined KS iteration scheme. Convergence in a weak sense is then proven. This generalized formulation is applicable to a wide range of different density-functional theories and possibly even to models outside of quantum mechanics.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
3.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
4.
E.
Cancès
and
C.
Le Bris
,
Int. J. Quantum Chem.
79
,
82
(
2000
).
5.
E.
Cancès
, in
Mathematical Models and Methods for Ab Initio Quantum Chemistry
, Volume 74 of Lecture Notes in Chemistry, edited by
M.
Defranceschi
and
C.
Le Bris
(
Springer
,
2000
).
6.
E.
Cancès
,
J. Chem. Phys.
114
,
10616
(
2001
).
7.
L. O.
Wagner
,
E. M.
Stoudenmire
,
K.
Burke
, and
S. R.
White
,
Phys. Rev. Lett.
111
,
093003
(
2013
).
8.
S.
Kvaal
,
U.
Ekström
,
A. M.
Teale
, and
T.
Helgaker
,
J. Chem. Phys.
140
,
18A518
(
2014
).
9.
E. I.
Tellgren
,
Phys. Rev. A
97
,
012504
(
2018
).
10.
M.
Ruggenthaler
, e-print arXiv:1509.01417v2 (
2017
).
11.
F. G.
Eich
,
M.
Di Ventra
, and
G.
Vignale
,
J. Phys.: Condens. Matter
29
,
063001
(
2016
).
12.
K.
Pernal
and
K. J. H.
Giesbertz
, in
Density-Functional Methods for Excited States
, Volume 368 Topics in Current Chemistry, edited by
N.
Ferré
,
M.
Filatov
, and
M.
Huix-Rotllant
(
Springer
,
2015
).
13.
K. J. H.
Giesbertz
and
M.
Ruggenthaler
, e-print arxiv:1710.08805 (
2017
).
14.
M.
Levy
,
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
(
1979
).
15.
P. E.
Lammert
,
Int. J. Quantum Chem.
107
,
1943
(
2007
).
16.
V.
Barbu
and
T.
Precupanu
,
Convexity and Optimization in Banach Spaces
, 4th ed. (
Springer
,
2012
).
17.
M. M.
Day
,
Bull. Am. Math. Soc.
47
,
313
(
1941
).
18.
R. E.
Megginson
,
Introduction to Banach Space Theory
(
Springer
,
1998
).
19.
P.
Blanchard
and
E.
Brüning
,
Mathematical Methods in Physics: Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics
, 2nd ed. (
Birkhäuser
,
2015
).
20.
S.
Kvaal
and
T.
Helgaker
,
J. Chem. Phys.
143
,
184106
(
2015
).
21.
P. E.
Lammert
,
J. Math. Phys.
59
,
042110
(
2018
).
22.
N.
Hadjisavvas
and
A.
Theophilou
,
Phys. Rev. A
30
,
2183
(
1984
).
23.
A.
Laestadius
,
J. Math. Chem.
52
,
2581
(
2014
).
24.
E. I.
Tellgren
,
S.
Kvaal
,
E.
Sagvolden
,
U.
Ekström
,
A. M.
Teale
and
T.
Helgaker
,
Phys. Rev. A
86
,
062506
(
2012
).
25.
A.
Laestadius
and
M.
Benedicks
,
Int. J. Quantum Chem.
114
,
782
(
2014
).
26.
E. I.
Tellgren
,
A.
Laestadius
,
T.
Helgaker
,
S.
Kvaal
, and
A. M.
Teale
,
J. Chem. Phys.
148
,
024101
(
2018
).
27.
A.
Laestadius
,
Int. J. Quantum Chem.
114
,
1445
(
2014
).
28.
M.
Ruggenthaler
,
N.
Tancogne-Dejean
,
J.
Flick
,
H.
Appel
, and
A.
Rubio
,
Nat. Rev. Chem.
2
,
0118
(
2018
).
29.
H.
Spohn
,
Dynamics of Charged Particles and Their Radiation Field
(
Cambridge University Press
,
2004
).
30.
L. H.
Ryder
,
Quantum Field Theory
(
Cambridge University Press
,
1996
).
You do not currently have access to this content.