The deformation of the interfaces between a soft material and hard material in contact plays an important role in the friction and lubrication between them. We recently reported that the elastic property of the contact interface dominated the friction of the interface between a flat polymer hydrogel [double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide] and a silica sphere [Ren et al., Soft Matter 11, 6192–6200 (2015)]. In this study, in order to quantitatively describe the dependence of the elastic response on the geometrical parameters of the deformed interfaces, we employed the resonance shear measurement (RSM) and investigated the deformation of the interfaces between a flat DN gel and silica spheres by varying the curvature radius (R = 18.3, 13.8, 9.2, 6.9 mm). Resonance curves were analyzed using a mechanical model consisting of the elastic (k2) and viscous (b2) parameters of the contact interface. The obtained elastic parameter (k2) increases at higher loads and for smaller silica spheres, while the viscous parameter (b2) was negligibly low for all the conditions. The relations between the elastic parameter (k2), geometric parameters of the deformed contact interface, and the applied normal load were investigated. The elastic parameter (k2) was found to be proportional to the arc length (arc) (radius of contact area, r), i.e., k2arc or k2r. We introduced the term “elastic modulus of the contact interface, Econtact” as a proportionality constant to describe the elastic parameter of the deformed interfaces (k2): k2 (N/m) = arc (m) × Econtact (Pa). Thus, the friction (f) between the DN gel and the silica sphere can be described by the following equation: f = felastic = arc (m) × Econtact (N/m2) × Δx (m) (Δx: shear deformation of the contact interface between the DN gel and silica sphere). The Econtact value determined from the slope k2 vs arc was 493 ± 18 kPa. The RSM measurement and the analysis presented here can be a unique method for characterizing the specific properties of the deformed interfaces between soft and hard materials.

1.
B. J.
Briscoe
and
S. K.
Sinha
,
Proc. Inst. Mech. Eng., Part J
216
,
401
413
(
2002
).
2.
N. K.
Myshkin
,
M. I.
Petrokovets
, and
A. V.
Kovalev
,
Tribol. Int.
38
,
910
921
(
2005
).
3.
J.
Gong
,
M.
Higa
,
Y.
Iwasaki
,
Y.
Katsuyama
, and
Y.
Osada
,
J. Phys. Chem. B
101
,
5487
5489
(
1997
).
4.
J.
Gong
,
Y.
Iwasaki
,
Y.
Osada
,
K.
Kurihara
, and
Y.
Hamai
,
J. Phys. Chem. B
103
,
6001
6006
(
1999
).
5.
J. P.
Gong
,
Soft Matter
2
,
544
552
(
2006
).
6.
J.
Gong
and
Y.
Osada
,
J. Chem. Phys.
109
,
8062
8068
(
1998
).
7.
H.-Y.
Ren
,
M.
Mizukami
,
T.
Tanabe
,
H.
Furukawa
, and
K.
Kurihara
,
Soft Matter
11
,
6192
6200
(
2015
).
8.
B. N. J.
Persson
,
Surf. Sci.
401
,
445
454
(
1998
).
9.
B. N. J.
Persson
,
J. Chem. Phys.
115
,
3840
3861
(
2001
).
10.
B. N. J.
Persson
,
Surf. Sci. Rep.
61
,
201
227
(
2006
).
11.
D.
Wang
,
X.-B.
Liang
,
Y.-H.
Liu
,
S.
Fujinami
,
T.
Nishi
, and
K.
Nakajima
,
Macromolecules
44
,
8693
8697
(
2011
).
12.
T.
Igarashi
,
S.
Fujinami
,
T.
Nishi
,
N.
Asao
, and
K.
Nakajima
,
Macromolecules
46
,
1916
1922
(
2013
).
13.
14.
Y.
Fukahori
,
P.
Gabriel
, and
J. J. C.
Busfield
,
Wear
269
,
854
856
(
2010
).
15.
P.
Gabriel
,
A. G.
Thomas
, and
J. J. C.
Busfield
,
Wear
268
,
747
750
(
2010
).
16.
G. A.
Pilkington
,
E.
Thormann
,
P. M.
Claesson
,
G. M.
Fuge
,
O. J. L.
Fox
,
M. N. R.
Ashfold
,
H.
Leese
,
D.
Mattiac
, and
W. H.
Briscoe
,
Phys. Chem. Chem. Phys.
13
,
9318
(
2011
).
17.
B.
Quignon
,
G. A.
Pilkington
,
E.
Thormann
,
P. M.
Claesson
,
M. N. R.
Ashfold
,
D.
Mattia
,
H.
Leese
,
S. A.
Davis
, and
W. H.
Briscoe
,
ACS Nano
7
,
10850
(
2013
).
18.
J. P.
Gong
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
,
Adv. Mater.
15
,
1155
1158
(
2003
).
19.
C.
Dushkin
and
K.
Kurihara
,
Colloids Surf., A
129-130
,
131
139
(
1997
).
20.
C.
Dushkin
and
K.
Kurihara
,
Rev. Sci. Instrum.
69
,
2095
2104
(
1998
).
21.
M.
Mizukami
and
K.
Kurihara
,
Rev. Sci. Instrum.
79
,
113705
(
2008
).
22.
H.
Sakuma
and
K.
Kurihara
,
Rev. Sci. Instrum.
80
,
013701
(
2009
).
23.
H.
Sakuma
,
K.
Otsuki
, and
K.
Kurihara
,
Phys. Rev. Lett.
96
,
046104
(
2006
).
24.
H.
Mizuno
,
T.
Haraszti
,
M.
Mizukami
, and
K.
Kurihara
,
SAE Int. J. Fuels Lubr.
1
,
1517
1523
(
2009
).
25.
K.
Ueno
,
M.
Kasuya
,
M.
Watanabe
,
M.
Mizukami
, and
K.
Kurihara
,
Phys. Chem. Chem. Phys.
12
,
4066
4071
(
2010
).
26.
J.
Watanabe
,
M.
Mizukami
, and
K.
Kurihara
,
Tribol. Lett.
56
,
501
508
(
2014
).

Supplementary Material

You do not currently have access to this content.