We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.

1.
E. G.
Timoshenko
,
Y. A.
Kuznetsov
, and
R.
Connolly
,
J. Chem. Phys.
117
,
9050
(
2002
).
2.
C. C.
Lee
,
J. A.
MacKay
,
J. M.
Fréchet
, and
F. C.
Szoka
,
Nat. Biotechnol.
23
,
1517
(
2005
).
3.
Y.
Cheng
,
L.
Zhao
,
Y.
Li
, and
T.
Xu
,
Chem. Soc. Rev.
40
,
2673
(
2011
).
4.
J.
Khandare
,
M.
Calderón
,
N. M.
Dagia
, and
R.
Haag
,
Chem. Soc. Rev.
41
,
2824
(
2012
).
5.
N. T.
Pourianazar
,
P.
Mutlu
, and
U.
Gunduz
,
J. Nanopart. Res.
16
,
2342
(
2014
).
6.
J.
Bugno
,
H.-j.
Hsu
, and
S.
Hong
,
Biomater. Sci.
3
,
1025
(
2015
).
7.
R.
Haag
,
A.
Sunder
, and
J.-F.
Stumbé
,
J. Am. Chem. Soc.
122
,
2954
(
2000
).
8.
H.
Türk
,
R.
Haag
, and
S.
Alban
,
Bioconjugate Chem.
15
,
162
(
2004
).
9.
X.
Xu
,
Q.
Ran
,
R.
Haag
,
M.
Ballauff
, and
J.
Dzubiella
,
Macromolecules
50
,
4759
(
2017
).
10.
J.
Khandare
,
A.
Mohr
,
M.
Calderón
,
P.
Welker
,
K.
Licha
, and
R.
Haag
,
Biomaterials
31
,
4268
(
2010
).
11.
J.
Dernedde
,
A.
Rausch
,
M.
Weinhart
,
S.
Enders
,
R.
Tauber
,
K.
Licha
,
M.
Schirner
,
U.
Zügel
,
A.
von Bonin
, and
R.
Haag
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
19679
(
2010
).
12.
D.
Maysinger
,
D.
Gröger
,
A.
Lake
,
K.
Licha
,
M.
Weinhart
,
P. K.-Y.
Chang
,
R.
Mulvey
,
R.
Haag
, and
R. A.
McKinney
,
Biomacromolecules
16
,
3073
(
2015
).
13.
T.
Schneider
,
P.
Welker
,
K.
Licha
,
R.
Haag
, and
G.
Schulze-Tanzil
,
BMC Musculoskeletal Disord.
16
,
387
(
2015
).
14.
J.
Vonnemann
,
C.
Sieben
,
C.
Wolff
,
K.
Ludwig
,
C.
Böttcher
,
A.
Herrmann
, and
R.
Haag
,
Nanoscale
6
,
2353
(
2014
).
15.
J.
Vonnemann
,
S.
Liese
,
C.
Kuehne
,
K.
Ludwig
,
J.
Dernedde
,
C.
Böttcher
,
R. R.
Netz
, and
R.
Haag
,
J. Am. Chem. Soc.
137
,
2572
(
2015
).
16.
A.
Sousa-Herves
,
P.
Würfel
,
N.
Wegner
,
J.
Khandare
,
K.
Licha
,
R.
Haag
,
P.
Welker
, and
M.
Calderón
,
Nanoscale
7
,
3923
(
2015
).
17.
T.
Cedervall
,
I.
Lynch
,
M.
Foy
,
T.
Berggård
,
S. C.
Donnelly
,
G.
Cagney
,
S.
Linse
, and
K. A.
Dawson
,
Angew. Chem., Int. Ed.
46
,
5754
(
2007
).
18.
M. C. L.
Giudice
,
L. M.
Herda
,
E.
Polo
, and
K. A.
Dawson
,
Nat. Commun.
7
,
13475
(
2016
).
19.
L.
Boselli
,
E.
Polo
,
V.
Castagnola
, and
K. A.
Dawson
,
Angew. Chem., Int. Ed.
56
,
4215
(
2017
).
20.
D.
Walczyk
,
F. B.
Bombelli
,
M. P.
Monopoli
,
I.
Lynch
, and
K. A.
Dawson
,
J. Am. Chem. Soc.
132
,
5761
(
2010
).
21.
A.
Salvati
,
A. S.
Pitek
,
M. P.
Monopoli
,
K.
Prapainop
,
F. B.
Bombelli
,
D. R.
Hristov
,
P. M.
Kelly
,
C.
Åberg
,
E.
Mahon
, and
K. A.
Dawson
,
Nat. Nanotechnol.
8
,
137
(
2013
).
22.
A. G.
Gornall
,
C. J.
Bardawill
, and
M. M.
David
,
J. Biol. Chem.
177
,
751
(
1949
).
23.
S.
Sugio
,
A.
Kashima
,
S.
Mochizuki
,
M.
Noda
, and
K.
Kobayashi
,
Protein Eng.
12
,
439
(
1999
).
24.
P.
Ascenzi
and
M.
Fasano
,
IUBMB Life
61
,
1118
(
2009
).
25.
M.
Fasano
,
S.
Curry
,
E.
Terreno
,
M.
Galliano
,
G.
Fanali
,
P.
Narciso
,
S.
Notari
, and
P.
Ascenzi
,
IUBMB Life
57
,
787
(
2005
).
26.
H.
Mandula
,
J. M. R.
Parepally
,
R.
Feng
, and
Q. R.
Smith
,
J. Pharmacol. Exp. Ther.
317
,
667
(
2006
).
27.
O. K.
Abou-Zied
and
N.
Al-Lawatia
,
ChemPhysChem
12
,
270
(
2011
).
28.
J.
Nilvebrant
and
S.
Hober
,
Comput. Struct. Biotechnol. J.
6
,
e201303009
(
2013
).
29.
I.
Willerich
and
F.
Gröhn
,
J. Am. Chem. Soc.
133
,
20341
(
2011
).
30.
G.
Mariani
,
D.
Moldenhauer
,
R.
Schweins
, and
F.
Gröhn
,
J. Am. Chem. Soc.
138
,
1280
(
2016
).
31.
A.
Niedzwiecka
,
J.
Stepinski
,
E.
Darzynkiewicz
,
N.
Sonenberg
, and
R.
Stolarski
,
Biochemistry
41
,
12140
(
2002
).
32.
K.
Datta
and
V. J.
LiCata
,
Nucleic Acids Res.
31
,
5590
(
2003
).
33.
K.
Datta
,
A. J.
Wowor
,
A. J.
Richard
, and
V. J.
LiCata
,
Biophys. J.
90
,
1739
(
2006
).
34.
A. J.
Wowor
,
K.
Datta
,
H. S.
Brown
,
G. S.
Thompson
,
S.
Ray
,
A.
Grove
, and
V. J.
LiCata
,
Biophys. J.
98
,
3015
(
2010
).
35.
L.
Giehm
,
C.
Christensen
,
U.
Boas
,
P. M.
Heegaard
, and
D. E.
Otzen
,
Biopolymers
89
,
522
(
2008
).
36.
J.
Giri
,
M. S.
Diallo
,
A. J.
Simpson
,
Y.
Liu
,
W. A.
Goddard
 III
,
R.
Kumar
, and
G. C.
Woods
,
ACS Nano
5
,
3456
(
2011
).
37.
S.
Sekowski
,
A.
Buczkowski
,
B.
Palecz
, and
T.
Gabryelak
,
Spectrochim. Acta, Part A
81
,
706
(
2011
).
38.
P.
Chanphai
,
E.
Froehlich
,
J.
Mandeville
, and
H.
Tajmir-Riahi
,
Colloids Surf., B
150
,
168
(
2017
).
39.
H.-M.
Zhang
,
K.
Lou
,
J.
Cao
, and
Y.-Q.
Wang
,
Langmuir
30
,
5536
(
2014
).
40.
B.
Klajnert
,
L.
Stanisławska
,
M.
Bryszewska
, and
B.
Pałecz
,
Biochim. Biophys. Acta
1648
,
115
(
2003
).
41.
E.
Froehlich
,
J.
Mandeville
,
C.
Jennings
,
R.
Sedaghat-Herati
, and
H.
Tajmir-Riahi
,
J. Phys. Chem. B
113
,
6986
(
2009
).
42.
J.
Mandeville
and
H.
Tajmir-Riahi
,
Biomacromolecules
11
,
465
(
2010
).
43.
S.
Yu
,
X.
Xu
,
C.
Yigit
,
M.
van der Giet
,
W.
Zidek
,
J.
Jankowski
,
J.
Dzubiella
, and
M.
Ballauff
,
Soft Matter
11
,
4630
(
2015
).
44.
M. T.
Record
,
C. F.
Anderson
, and
T. M.
Lohman
,
Q. Rev. Biophys.
11
,
103
(
1978
).
45.
K.
Henzler
,
B.
Haupt
,
K.
Lauterbach
,
A.
Wittemann
,
O.
Borisov
, and
M.
Ballauff
,
J. Am. Chem. Soc.
132
,
3159
(
2010
).
46.
C.
Yigit
,
J.
Heyda
,
M.
Ballauff
, and
J.
Dzubiella
,
J. Chem. Phys.
143
,
064905
(
2015
).
47.
X.
Xu
,
Q.
Ran
,
P.
Dey
,
R.
Nikam
,
R.
Haag
,
M.
Ballauff
, and
J.
Dzubiella
,
Biomacromolecules
19
,
409
(
2018
).
48.
S.
Geschwindner
,
J.
Ulander
, and
P.
Johansson
,
J. Med. Chem.
58
,
6321
(
2015
).
49.
A.
Velazquez-Campoy
and
E.
Freire
,
Nat. Protoc.
1
,
186
(
2006
).
50.
D. F.
Evans
and
H.
Wennerstrom
,
Colloidal Domain
(
Wiley-VCH
,
1999
), pp.
279
286
.
51.
V.
Lafont
,
A. A.
Armstrong
,
H.
Ohtaka
,
Y.
Kiso
,
L.
Mario Amzel
, and
E.
Freire
,
Chem. Biol. Drug Des.
69
,
413
(
2007
).
52.
J. D.
Chodera
and
D. L.
Mobley
,
Annu. Rev. Biophys.
42
,
121
(
2013
).
53.
B.
Meloun
,
L.
Moravek
, and
V.
Kostka
,
FEBS Lett.
58
,
134
(
1975
).
54.
F.
Paulus
,
D.
Steinhilber
,
P.
Welker
,
D.
Mangoldt
,
K.
Licha
,
H.
Depner
,
S.
Sigrist
, and
R.
Haag
,
Polym. Chem.
5
,
5020
(
2014
).
55.
R. I.
Masel
and
R. I.
Masel
,
Principles of Adsorption and Reaction on Solid Surfaces
(
John Wiley & Sons
,
1996
), Vol. 3.
56.
MicroCal, LLC,
ITC Data Analysis in Origin: Tutorial Guide
(
MicroCal, LLC
,
Northampton, MA
,
2004
).
57.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
58.
J. K.
Noel
,
P. C.
Whitford
,
K. Y.
Sanbonmatsu
, and
J. N.
Onuchic
,
Nucleic Acids Res.
38
,
W657
(
2010
).
59.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
60.
C.
Yigit
,
M.
Kanduc
,
M.
Ballauff
, and
J.
Dzubiella
,
Langmuir
33
,
417
(
2016
).
61.
A. B.
Kayitmazer
,
D.
Seeman
,
B. B.
Minsky
,
P. L.
Dubin
, and
Y.
Xu
,
Soft Matter
9
,
2553
(
2013
).
62.
M. W.
Pantoliano
,
R. A.
Horlick
,
B. A.
Springer
,
D. E.
Van Dyk
,
T.
Tobery
,
D. R.
Wetmore
,
J. D.
Lear
,
A. T.
Nahapetian
,
J. D.
Bradley
, and
W. P.
Sisk
,
Biochemistry
33
,
10229
(
1994
).
63.
A. M.
Spuches
,
H. G.
Kruszyna
,
A. M.
Rich
, and
D. E.
Wilcox
,
Inorg. Chem.
44
,
2964
(
2005
).
64.
J.-P. E.
Grolier
and
J. M.
Del Río
,
J. Solution Chem.
44
,
987
(
2015
).
65.
M. K.
Gilson
and
H.-X.
Zhou
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
21
(
2007
).
66.
R.
Talhout
,
A.
Villa
,
A. E.
Mark
, and
J. B.
Engberts
,
J. Am. Chem. Soc.
125
,
10570
(
2003
).
67.
J. R.
Horn
,
D.
Russell
,
E. A.
Lewis
, and
K. P.
Murphy
,
Biochemistry
40
,
1774
(
2001
).
68.
N.
Welsch
,
A. L.
Becker
,
J.
Dzubiella
, and
M.
Ballauff
,
Soft Matter
8
,
1428
(
2012
).
69.
W.-Y.
Chen
,
H.-M.
Huang
,
C.-C.
Lin
,
F.-Y.
Lin
, and
Y.-C.
Chan
,
Langmuir
19
,
9395
(
2003
).
70.
D.
Ben-Amotz
and
R.
Underwood
,
Acc. Chem. Res.
41
,
957
(
2008
).
71.
B.
Breiten
,
M. R.
Lockett
,
W.
Sherman
,
S.
Fujita
,
M.
Al-Sayah
,
H.
Lange
,
C. M.
Bowers
,
A.
Heroux
,
G.
Krilov
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
135
,
15579
(
2013
).
72.
K. A.
Silverstein
,
A.
Haymet
, and
K. A.
Dill
,
J. Am. Chem. Soc.
120
,
3166
(
1998
).
73.
M.
Lukšič
,
T.
Urbic
,
B.
Hribar-Lee
, and
K. A.
Dill
,
J. Phys. Chem. B
116
,
6177
(
2012
).

Supplementary Material

You do not currently have access to this content.