Double-stranded DNA translocates through sufficiently large nanopores either in a linear single-file fashion or in a folded hairpin conformation when captured somewhere along its length. We show that the folding state of DNA can be controlled by changing the electrolyte concentration, pH, and polyethylene glycol content of the measurement buffer. At pH 8 in 1M LiCl or 0.35M KCl, single-file translocations make up more than 90% of the total. We attribute the effect to the onset of electro-osmotic flow from the pore at low ionic strength. Our hypothesis on the critical role of flows is supported by the preferred orientation of entry of a strand that has been folded into a multi-helix structure at one end. Control over DNA folding is critical for nanopore sensing approaches that use modifications along a DNA strand and the associated secondary current drops to encode information.

1.
C.
Dekker
, “
Solid-state nanopores
,”
Nat. Nanotechnol.
2
,
209
215
(
2007
).
2.
M.
Muthukumar
,
C.
Plesa
, and
C.
Dekker
, “
Single-molecule sensing with nanopores
,”
Phys. Today
68
(
8
),
40
46
(
2015
).
3.
W.
Shi
,
A. K.
Friedman
, and
L. A.
Baker
, “
Nanopore sensing
,”
Anal. Chem.
89
,
157
188
(
2017
).
4.
N. A. W.
Bell
and
U. F.
Keyser
, “
Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
,”
Nat. Nanotechnol.
11
,
645
651
(
2016
).
5.
J. Y. Y.
Sze
,
A. P.
Ivanov
,
A. E. G.
Cass
, and
J. B.
Edel
, “
Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers
,”
Nat. Commun.
8
,
1552
(
2017
).
6.
E.
Beamish
,
V.
Tabard-Cossa
, and
M.
Godin
, “
Identifying structure in short DNA scaffolds using solid-state nanopores
,”
ACS Sens.
2
,
1814
1820
(
2017
).
7.
J.
Kong
,
J.
Zhu
, and
U. F.
Keyser
, “
Single molecule based SNP detection using designed DNA carriers and solid-state nanopores
,”
Chem. Commun.
53
,
436
439
(
2017
).
8.
A.
Singer
,
M.
Wanunu
,
W.
Morrison
,
H.
Kuhn
,
M.
Frank-Kamenetskii
, and
A.
Meller
, “
Nanopore based sequence specific detection of duplex DNA for genomic profiling
,”
Nano Lett.
10
,
738
742
(
2010
).
9.
J.
Li
,
M.
Gershow
,
D.
Stein
,
E.
Brandin
, and
J. A.
Golovchenko
, “
DNA molecules and configurations in a solid-state nanopore microscope
,”
Nat. Mater.
2
,
611
615
(
2003
).
10.
A. J.
Storm
,
J. H.
Chen
,
H. W.
Zandbergen
, and
C.
Dekker
, “
Translocation of double-strand DNA through a silicon oxide nanopore
,”
Phys. Rev. E
71
,
051903
(
2005
).
11.
M.
Mihovilovic
,
N.
Hagerty
, and
D.
Stein
, “
Statistics of DNA capture by a solid-state nanopore
,”
Phys. Rev. Lett.
110
,
028102
(
2013
).
12.
L. J.
Steinbock
,
O.
Otto
,
C.
Chimerel
,
J.
Gornall
, and
U. F.
Keyser
, “
Detecting DNA folding with nanocapillaries
,”
Nano Lett.
10
,
2493
2497
(
2010
).
13.
N. A. W.
Bell
and
U. F.
Keyser
, “
Specific protein detection using designed DNA carriers and nanopores
,”
J. Am. Chem. Soc.
137
,
2035
2041
(
2015
).
14.
C.
Plesa
and
C.
Dekker
, “
Data analysis methods for solid-state nanopores
,”
Nanotechnology
26
,
084003
(
2015
).
15.
F.
Feroz
,
M. P.
Hobson
, and
M.
Bridges
, “
MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics
,”
Mon. Not. R. Astron. Soc.
398
,
1601
1614
(
2009
).
16.
J.
Buchner
,
A.
Georgakakis
,
K.
Nandra
,
L.
Hsu
,
C.
Rangel
,
M.
Brightman
,
A.
Merloni
,
M.
Salvato
,
J.
Donley
, and
D.
Kocevski
, “
X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue
,”
Astron. Astrophys.
564
,
A125
(
2014
).
17.
C. G.
Baumann
,
S. B.
Smith
,
V. A.
Bloomfield
, and
C.
Bustamante
, “
Ionic effects on the elasticity of single DNA molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
6185
6190
(
1997
).
18.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
883
(
2008
).
19.
C. T. A.
Wong
and
M.
Muthukumar
, “
Polymer capture by electro-osmotic flow of oppositely charged nanopores
,”
J. Chem. Phys.
126
,
164903
(
2007
).
20.
S. H.
Behrens
and
D. G.
Grier
, “
The charge of glass and silica surfaces
,”
J. Chem. Phys.
115
,
6716
6721
(
2001
).
21.
E. A. S.
Doherty
,
K. D.
Berglund
,
B. A.
Buchholz
,
I. V.
Kourkine
,
T. M.
Przybycien
,
R. D.
Tilton
, and
A. E.
Barron
, “
Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA
,”
Electrophoresis
23
,
2766
2776
(
2002
).
22.
O. A.
Hickey
,
J. L.
Harden
, and
G. W.
Slater
, “
Molecular dynamics simulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow
,”
Phys. Rev. Lett.
102
,
108304
(
2009
).
23.
P.
Chen
,
T.
Mitsui
,
D. B.
Farmer
,
J. A.
Golovchenko
,
R. G.
Gordon
, and
D.
Branton
, “
Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores
,”
Nano Lett.
4
,
1333
1337
(
2004
).
24.
Y.
He
,
M.
Tsutsui
,
C.
Fan
,
M.
Taniguchi
, and
T.
Kawai
, “
Controlling DNA translocation through gate modulation of nanopore wall surface charges
,”
ACS Nano
5
,
5509
5518
(
2011
).
25.
S. W.
Kowalczyk
,
D. B.
Wells
,
A.
Aksimentiev
, and
C.
Dekker
, “
Slowing down DNA translocation through a nanopore in lithium chloride
,”
Nano Lett.
12
,
1038
1044
(
2012
).
26.
N.
Laohakunakorn
,
B.
Gollnick
,
F.
Moreno-Herrero
,
D. G. A. L.
Aarts
,
R. P. A.
Dullens
,
S.
Ghosal
, and
U. F.
Keyser
, “
A Landau–Squire nanojet
,”
Nano Lett.
13
,
5141
5146
(
2013
).
27.
M.
Wanunu
,
W.
Morrison
,
Y.
Rabin
,
A. Y.
Grosberg
, and
A.
Meller
, “
Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient
,”
Nat. Nanotechnol.
5
,
160
165
(
2010
).
28.
M.
Mao
,
S.
Ghosal
, and
G.
Hu
, “
Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage
,”
Nanotechnology
24
,
245202
(
2013
).

Supplementary Material

You do not currently have access to this content.