Using the scheme of Delaunay and Gabriel graphs, we analyzed the amorphous structures of computationally created Nd–Fe alloys for several composition ratios based on melt quench simulations with finite temperature first-principles molecular dynamics. By the comparison of the radial distribution functions of the whole system and those derived from the Delaunay and Gabriel graphs, it was shown that the Gabriel graphs represent the first nearest neighbor networks well in the examined amorphous systems. From the Gabriel graph analyses, we examined the coordination structures of amorphous Nd–Fe alloys statistically. We found that the ranges of distributions of coordination numbers are wider at the lower Nd composition ratios. The angular distributions among three adjacent atoms were also analyzed, and it was found that the steeper the angular distributions become the higher the Nd composition ratios are. These features mean that the orders in the amorphous system become stronger as the Nd ratio increases, which corresponds to the appearance of crystalline grain boundary phases at high Nd composition ratios [T. T. Sasaki et al., Acta Mater. 115, 269–277 (2016)].

1.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature
427
,
423
426
(
2004
).
2.
J. F.
Wager
,
Science
300
,
1245
1246
(
2003
).
3.
H.
Seo
,
Y.-J.
Cho
,
J.
Kim
,
S. M.
bobade
,
K.-Y.
Park
,
J.
Lee
, and
D.-K.
Choi
,
Appl. Phys. Lett.
96
,
222101
(
2010
).
4.
H.
Warlimont
and
R.
Boll
,
J. Magn. Magn. Mater.
26
,
97
105
(
1982
).
5.
Y.
Yoshizawa
and
K.
Yamauchi
,
Mater. Trans., JIM
31
,
307
314
(
1990
).
6.
A.
Hernando
,
M.
Vázquez
,
G.
Rivero
, and
J. M.
Barandiarán
,
J. Magn. Magn. Mater.
101
,
6
10
(
1991
).
7.
S.
Roth
,
M.
Stoica
,
J.
Degmová
,
U.
Gaitzsch
,
J.
Eckert
, and
L.
Schultz
,
J. Magn. Magn. Mater.
304
,
192
196
(
2006
).
8.
R.
Caballero-Flores
,
V.
Franco
,
A.
Conde
,
K. E.
Knipling
, and
M. A.
Willard
,
Appl. Phys. Lett.
96
,
182506
(
2010
).
9.
10.
F.
Wang
,
A.
Inoue
,
Y.
Han
,
S. L.
Zhu
,
F. L.
Kong
,
E.
Zanaeva
,
G. D.
Liu
,
E.
Shalaan
,
F.
Al-Marzouki
, and
A.
Obaid
,
J. Alloys Compd.
723
,
376
384
(
2017
).
11.
S.
Li
,
B.
Gu
,
H.
Bi
,
Z.
Tian
,
G.
Xie
,
Y.
Zhu
, and
Y.
Du
,
J. Appl. Phys.
92
,
7514
7518
(
2002
).
12.
W. F.
Li
,
T.
Ohkubo
, and
K.
Hono
,
Acta Mater.
57
,
1337
1346
(
2009
).
13.
K.
Hono
and
H.
Sepehri-Amin
,
Scr. Mater
67
,
530
535
(
2012
).
14.
T.-H.
Kim
,
S.-R.
Lee
,
S.
Namkuma
, and
T.-S.
Jang
,
J. Alloys Compd.
537
,
261
268
(
2012
).
15.
H.
Sepehri-Amin
,
T.
Ohkubo
,
T.
Shima
, and
K.
Hono
,
Acta Mater.
60
,
819
830
(
2012
).
16.
U. M. R.
Seelam
,
L.
Liu
,
T.
Akiya
,
H.
Sepehri-Amin
,
T.
Ohkubo
,
N.
Sakuma
,
M.
Yano
,
A.
Kato
, and
K.
Hono
,
J. Magn. Magn. Mater.
412
,
234
242
(
2016
).
17.
T. T.
Sasaki
,
T.
Ohkubo
, and
K.
Hono
,
Acta Mater.
115
,
269
277
(
2016
).
18.
A.
Malins
,
S. R.
Williams
,
J.
Eggers
, and
C. P.
Royall
,
J. Chem. Phys.
139
,
234506
(
2013
).
19.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
4963
(
1987
).
20.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
805
(
1983
).
21.
L.
Maignan
and
F.
Gruau
,
ACM Trans. Auton. Adapt. Syst.
6
,
12:1
12:14
(
2011
).
22.
P.
Keblinski
,
S. R.
Phillpot
,
D.
Wolf
, and
H.
Gleiter
,
Phys. Rev. Lett.
77
,
2965
(
1996
).
23.
24.
I.
Štich
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. B
44
,
11092
(
1991
).
25.
P. S.
Branicio
,
J. P.
Rino
,
F.
Shimojo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
J. Appl. Phys.
94
,
3840
3848
(
2003
).
26.
J.
Akola
,
J.
Larrucea
, and
R. O.
Jones
,
Phys. Rev. B
83
,
094113
(
2011
).
27.
S.
Davis
and
G.
Gutiérrez
,
J. Phys.: Condens. Matter
23
,
495401
(
2011
).
28.
A.
Sakuda
,
K.
Ohara
,
K.
Fukuda
,
K.
Nakanishi
,
T.
Kawaguchi
,
H.
Arai
,
Y.
Uchimoto
,
T.
Ohta
,
E.
Matsubara
,
Z.
Ogumi
,
T.
Okumura
,
H.
Kobayashi
,
H.
Kageyama
,
M.
Shikano
,
H.
Sakaebe
, and
T.
Takeuchi
,
J. Am. Chem. Soc.
139
,
8796
8799
(
2017
).
29.
K.
Nishio
,
T.
Miyazaki
, and
H.
Nakamura
,
Phys. Rev. Lett.
111
,
155502
(
2013
).
30.
K.
Nishio
and
T.
Miyazaki
,
Sci. Rep.
6
,
23455
(
2016
).
31.
K.
Nishio
and
T.
Miyazaki
,
Sci. Rep.
7
,
40269
(
2017
).
32.
B.
Delaunay
,
Bull. l’Acad. Sci. l’U. R. S. S.
6
,
793
800
(
1934
).http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=4937&option_lang=eng
33.
K. R.
Gabriel
and
R. R.
Sokal
,
Syst. Bio.
18
,
259
278
(
1969
).
34.
R.
Dyer
,
H.
Zhang
, and
T.
Möller
, in
ACM Symposium on Solid and Physical Modeling
(
Association for Computing Machinery
,
2007
), pp.
415
420
.
35.
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
37.
I.
Morrison
,
D. M.
Bylander
, and
L.
Kleinman
,
Phys. Rev. B
47
,
6728
(
1993
).
38.
M. D.
Kluge
,
J. R.
Ray
, and
A.
Rahman
,
Phys. Rev. B
36
,
4234
4237
(
1987
).
39.
J.
Fortner
and
J. S.
Lannin
,
Phys. Rev. B
39
,
5527(R)
(
1989
).
You do not currently have access to this content.