Molecular dynamics (MD) simulations give access to equilibrium structures and dynamic properties given an ergodic sampling and an accurate force-field. The force-field parameters are calibrated to reproduce properties measured by experiments or simulations. The main contribution of this paper is an approximate Bayesian framework for the calibration and uncertainty quantification of the force-field parameters, without assuming parameter uncertainty to be Gaussian. To this aim, since the likelihood function of the MD simulation models is intractable in the absence of Gaussianity assumption, we use a likelihood-free inference scheme known as approximate Bayesian computation (ABC) and propose an adaptive population Monte Carlo ABC algorithm, which is illustrated to converge faster and scales better than the previously used ABCsubsim algorithm for the calibration of the force-field of a helium system. The second contribution is the adaptation of ABC algorithms for High Performance Computing to MD simulations within the Python ecosystem ABCpy. This adaptation includes a novel use of a dynamic allocation scheme for Message Passing Interface (MPI). We illustrate the performance of the developed methodology to learn posterior distribution and Bayesian estimates of Lennard-Jones force-field parameters of helium and the TIP4P system of water implemented for both simulated and experimental datasets collected using neutron and X-ray diffraction. For simulated data, the Bayesian estimate is in close agreement with the true parameter value used to generate the dataset. For experimental as well as for simulated data, the Bayesian posterior distribution shows a strong correlation pattern between the force-field parameters. Providing an estimate of the entire posterior distribution, our methodology also allows us to perform the uncertainty quantification of model prediction. This research opens up the possibility to rigorously calibrate force-fields from available experimental datasets of any structural and dynamic property.

1.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
New York, NY, USA
,
1989
).
2.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic Press, Inc.
,
Orlando, FL, USA
,
2001
).
3.
M.
Karplus
and
R.
Lavery
, “
Significance of molecular dynamics simulations for life sciences
,”
Isr. J. Chem.
54
(
8-9
),
1042
1051
(
2014
).
4.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
5.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: Tip4p/2005
,”
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
6.
M. W.
Mahoney
and
W. L.
Jorgensen
, “
A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
,”
J. Chem. Phys.
112
(
20
),
8910
8922
(
2000
).
7.
J.-M.
Marin
,
P.
Pudlo
,
C. P.
Robert
, and
R. J.
Ryder
, “
Approximate Bayesian computational methods
,”
Stat. Comput.
22
(
6
),
1167
1180
(
2012
).
8.
P.
Angelikopoulos
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework
,”
J. Chem. Phys.
137
(
14
),
144103
(
2012
).
9.
F.
Cailliez
and
P.
Pernot
, “
Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation
,”
J. Chem. Phys.
134
(
5
),
054124
(
2011
).
10.
F.
Rizzi
,
H. N.
Najm
,
B. J.
Debusschere
,
K.
Sargsyan
,
M.
Salloum
,
H.
Adalsteinsson
, and
O. M.
Knio
, “
Uncertainty quantification in MD simulations. Part I: Forward propagation
,”
Multiscale Model. Simul.
10
(
4
),
1428
1459
(
2012
).
11.
P.
Angelikopoulos
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty
,”
J. Phys. Chem. B
117
(
47
),
14808
14816
(
2013
).
12.
A.
Chernatynskiy
,
S. R.
Phillpot
, and
R.
LeSar
, “
Uncertainty quantification in multiscale simulation of materials: A prospective
,”
Annu. Rev. Mater. Res.
43
,
157
182
(
2013
).
13.
F.
Cailliez
,
B.
Arnaud
, and
P.
Pascal
, “
Calibration of forcefields for molecular simulation: Sequential design of computer experiments for building cost-efficient kriging metamodels
,”
J. Comput. Chem.
35
(
2
),
130
149
(
2014
).
14.
K.
Farrell
,
J. T.
Oden
, and
D.
Faghihi
, “
A bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems
,”
J. Comput. Phys.
295
,
189
208
(
2015
).
15.
K.
Sargsyan
,
H. N.
Najm
, and
R.
Ghanem
, “
On the statistical calibration of physical models
,”
Int. J. Chem. Kinet.
47
(
4
),
246
276
(
2015
).
16.
K.
Farrell-Maupin
and
J. T.
Oden
, “
Adaptive selection and validation of models of complex systems in the presence of uncertainty
,”
Res. Math. Sci.
4
(
1
),
14
(
2017
).
17.
R. A.
Messerly
,
T. A.
Knotts
 IV
, and
W. V.
Wilding
, “
Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes
,”
J. Chem. Phys.
146
(
19
),
194110
(
2017
).
18.
P.
Pernot
and
F.
Cailliez
, “
A critical review of statistical calibration/prediction models handling data inconsistency and model inadequacy
,”
AIChE J.
63
(
10
),
4642
4665
(
2017
).
19.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
 et al., “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
(
7
),
845
854
(
2013
).
20.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
21.
L.
Kulakova
,
P.
Angelikopoulos
,
P. E.
Hadjidoukas
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Approximate Bayesian computation for granular and molecular dynamics simulations
,” in
Proceedings of the Platform for Advanced Scientific Computing Conference
(
ACM
,
2016
), p.
4
.
22.
J.
Lintusaari
,
M. U.
Gutmann
,
R.
Dutta
,
S.
Kaski
, and
J.
Corander
, “
Fundamentals and recent developments in approximate Bayesian computation
,”
Syst. Biol.
66
(
1
),
e66
e82
(
2017
).
23.
M.
Chiachio
,
J. L.
Beck
,
J.
Chiachio
, and
G.
Rus
, “
Approximate Bayesian computation by subset simulation
,”
SIAM J. Sci. Comput.
36
(
3
),
A1339
A1358
(
2014
).
24.
R.
Dutta
,
M.
Schoengens
,
J.-P.
Onnela
, and
A.
Mira
, “
ABCpy: A user-friendly, extensible, and parallel library for approximate Bayesian computation
,” in
Proceedings of the Platform for Advanced Scientific Computing Conference
(
ACM
,
2017
), p.
8
.
25.
R.
Dutta
,
M.
Schoengens
,
A.
Ummadisingu
,
N.
Widmer
,
J.-P.
Onnela
, and
A.
Mira
, “
ABCpy: A high-performance computing perspective to approximate Bayesian computation
,” preprint arXiv:1711.04694 (
2017
).
26.
Z. F.
Brotzakis
,
C. C. M.
Groot
,
W. H.
Brandeburgo
,
H. J.
Bakker
, and
P. G.
Bolhuis
, “
Dynamics of hydration water around native and misfolded α-lactalbumin
,”
J. Phys. Chem. B
120
(
21
),
4756
4766
(
2016
).
27.
H.
Ohtaki
and
T.
Radnai
, “
Structure and dynamics of hydrated ions
,”
Chem. Rev.
93
(
3
),
1157
1204
(
1993
).
28.
R.
Abel
,
T.
Young
,
R.
Farid
,
B. J.
Berne
, and
R. A.
Friesner
, “
Role of the active-site solvent in the thermodynamics of factor xa ligand binding
,”
J. Am. Chem. Soc.
130
(
9
),
2817
2831
(
2008
).
29.
Z. F.
Brotzakis
,
I. K.
Voets
,
H. J.
Bakker
, and
P. G.
Bolhuis
, “
Water structure and dynamics in the hydration layer of a type iii anti-freeze protein
,”
Phys. Chem. Chem. Phys.
20
(
10
),
6996
7006
(
2018
).
30.
A. K.
Soper
, “
The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa
,”
Chem. Phys.
258
(
2-3
),
121
137
(
2000
).
31.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
, “
Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide q-range
,”
J. Chem. Phys.
138
(
7
),
074506
(
2013
).
32.

Note that in this paper, for the helium system simulated with LAMMPS we use zJ and nm units for the σLJ and ϵLJ, whereas for the TIP4P water simulated with GROMACS, we used the GROMACS conventional units of kJ mol−1 and nm for the σTP and ϵTP, respectively. We select these units to be consistent with the papers we have chosen as our benchmark.

33.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
(
13
),
134103
(
2004
).
34.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
(
44
),
19663
19688
(
2011
).
35.
B. J.
Jaidhan
,
P. S.
Rao
, and
A.
Apparao
, “
Energy minimization and conformation analysis of molecules using steepest descent method
,”
Int. J. Comput. Sci. Inf. Technol.
5
(
3
),
3525
3528
(
2014
), ijcsit.com/docs/Volume%205/vol5issue03/ijcsit20140503193.pdf.
36.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
,
J. G. E. M.
Fraaije
 et al., “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
(
12
),
1463
1472
(
1997
).
37.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
38.
G.
Bussi
,
F. L.
Gervasio
,
A.
Laio
, and
M.
Parrinello
, “
Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics
,”
J. Am. Chem. Soc.
128
(
41
),
13435
13441
(
2006
).
39.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
40.
C. P.
Robert
and
G.
Casella
,
Monte Carlo Statistical Methods
(
Springer-Verlag, New York
,
2005
).
41.
E. A.
Martinez
,
C. A.
Muschik
,
P.
Schindler
,
D.
Nigg
,
A.
Erhard
,
M.
Heyl
,
P.
Hauke
,
M.
Dalmonte
,
T.
Monz
,
P.
Zoller
, and
R.
Blatt
, “
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
,”
Nature
534
(
7608
),
516
519
(
2016
).
42.
P.
Turchin
,
T. E.
Currie
,
E. A. L.
Turner
, and
S.
Gavrilets
, “
War, space, and the evolution of old world complex societies
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
41
),
16384
16389
(
2013
).
43.
J.
Schaye
,
R. A.
Crain
,
R. G.
Bower
,
M.
Furlong
,
M.
Schaller
,
T.
Theuns
,
C.
Dalla Vecchia
,
C. S.
Frenk
,
I. G.
McCarthy
,
J. C.
Helly
,
A.
Jenkins
,
Y. M.
Rosas-Guevara
,
S. D. M.
White
,
M.
Baes
,
C. M.
Booth
,
P.
Camps
,
J. F.
Navarro
,
Y.
Qu
,
A.
Rahmati
,
T.
Sawala
,
P. A.
Thomas
, and
J.
Trayford
, “
The EAGLE project: Simulating the evolution and assembly of galaxies and their environments
,”
Mon. Not. R. Astron. Soc.
446
(
1
),
521
554
(
2015
).
44.
M.
Lenormand
,
F.
Jabot
, and
G.
Deffuant
, “
Adaptive approximate Bayesian computation for complex models
,”
Comput. Stat.
28
(
6
),
2777
2796
(
2013
).
45.
P.
Fearnhead
and
D.
Prangle
, “
Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
74
(
3
),
419
474
(
2012
).
46.
P.
Pudlo
,
J.-M.
Marin
,
A.
Estoup
,
J.-M.
Cornuet
,
M.
Gautier
, and
C. P.
Robert
, “
Reliable ABC model choice via random forests
,”
Bioinformatics
32
(
6
),
859
866
(
2015
).
47.
B.
Jiang
,
T.-yu
Wu
,
C.
Zheng
, and
W. H.
Wong
, “
Learning summary statistic for approximate Bayesian computation via deep neural network
,”
Stat. Sin.
27
,
1595
1618
(
2017
); preprint arXiv:1510.02175 (
2015
).
48.
M. U.
Gutmann
,
R.
Dutta
,
S.
Kaski
, and
J.
Corander
, “
Likelihood-free inference via classification
,”
Stat. Comput.
28
(
2
),
411
425
(
2018
).
49.
R. L.
Graham
, “
Bounds for certain multiprocessing anomalies
,”
Bell Labs Tech. J.
45
(
9
),
1563
1581
(
1966
).
50.
E.
Meeds
and
M.
Welling
, “
GPS-ABC: Gaussian process surrogate approximate Bayesian computation
,” in
UAI’14 Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, Quebec City, Quebec, Canada, 23-27 July 2014
(
AUAI Press
,
Arlington, VA
,
2014
), pp.
593
602
; preprint arXiv:1401.2838 (
2014
).
51.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
20
),
12562
12566
(
2002
).
52.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
53.
Z. F.
Brotzakis
and
P. G.
Bolhuis
A one-way shooting algorithm for transition path sampling of asymmetric barriers
,”
J. Chem. Phys.
145
(
16
),
164112
(
2016
).
You do not currently have access to this content.