Pump-probe near edge X-ray absorption fine structure (PP-NEXAFS) spectra of molecules offer insight into valence-excited states, even if optically dark. In PP-NEXAFS spectroscopy, the molecule is “pumped” by UV or visible light enforcing a valence excitation, followed by an X-ray “probe” exciting core electrons into (now) partially empty valence orbitals. Calculations of PP-NEXAFS have so far been done by costly, correlated wavefunction methods which are not easily applicable to medium-sized or large molecules. Here we propose an efficient, first principles method based on density functional theory in combination with the transition potential and ΔSCF methodology (TP-DFT/ΔSCF) to compute molecular ground state and PP-NEXAFS spectra. We apply the method to nπ* pump/O-K-edge NEXAFS probe spectroscopy of thymine (for which both experimental and other theoretical data exist) and to nπ* or ππ* pump/N-K-edge NEXAFS probe spectroscopies of trans- and cis-azobenzene.

1.
J.
Stöhr
,
NEXAFS Spectroscopy
(
Springer
,
1996
).
2.
L. X.
Chen
, “
X-ray transient absorption spectroscopy
,” in
X-Ray Absorption and X-Ray Emission Spectroscopy
, edited by
J. A.
Van Bokhoven
and
C.
Lamberti
(
John Wiley & Sons
,
2016
).
3.
L. X.
Chen
,
Angew. Chem., Int. Ed.
43
,
2886
(
2004
).
4.
C.
Bressler
and
M.
Chergui
,
Chem. Rev.
104
,
1781
(
2004
).
5.
L.
Young
,
K.
Ueda
,
M.
Gühr
,
P. H.
Bucksbaum
,
M.
Simon
,
S.
Mukamel
,
N.
Rohringer
,
K. C.
Prince
,
C.
Masciovecchio
,
M.
Meyer
,
A.
Rudenko
,
D.
Rolles
,
C.
Bostedt
,
M.
Fuchs
,
D. A.
Reis
,
R.
Santra
,
H.
Kapteyn
,
M.
Murnane
,
H.
Ibrahim
,
F.
Légaré
,
M.
Vrakking
,
M.
Isinger
,
D.
Kroon
,
M.
Gisselbrecht
,
A.
L’Huillier
,
H. J.
Wörner
, and
S. R.
Leone
,
J. Phys. B: At., Mol. Opt. Phys.
51
,
032003
(
2018
).
6.
T. J. A.
Wolf
,
R. H.
Myhre
,
J. P.
Cryan
,
S.
Coriani
,
R. J.
Squibb
,
A.
Battistoni
,
N.
Berrah
,
C.
Bostedt
,
P.
Bucksbaum
,
G.
Coslovich
,
R.
Feifel
,
K. J.
Gaffney
,
J.
Grilj
,
T. J.
Martinez
,
S.
Miyabe
,
S. P.
Moeller
,
M.
Mucke
,
A.
Natan
,
R.
Obaid
,
T.
Osipov
,
O.
Plekan
,
S.
Wang
,
H.
Koch
, and
M.
Gühr
,
Nat. Commun.
8
,
29
(
2016
).
7.

In principle, relaxation pathways of the singlet ππ* other than IC are possible and may also affect transient absorption spectra. The most important alternative is ISC (Inter System Crossing) to a triplet ππ* state. In thymine, however, the triplet state is known from quantum chemical calculations to be at much lower energy than the singlet ππ* and * states8 such that the IC pathway from singlet ππ* to singlet * should clearly dominate, certainly on the sub-picosecond scale of interest.8 However, for other molecules, an ISC deactivation may dominate even on short time scales. A recent example has been provided in Ref. 9, where ultrafast ISC has been observed in femtosecond X-ray transient carbon K-edge absorption spectra.

8.
M.
Etinski
,
T.
Fleig
, and
Ch.
Marian
,
J. Phys. Chem. A
113
(
43
),
11809
(
2009
).
9.
A.
Bhattacherjee
,
C. D.
Pemmaraju
,
K.
Schnorr
,
A. R.
Attar
, and
S. R.
Leone
,
J. Am. Chem. Soc.
139
,
16576
(
2017
).
10.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
6735
(
1995
).
11.
S.
Coriani
,
O.
Christiansen
,
T.
Fransson
, and
P.
Norman
,
Phys. Rev. A
85
,
022507
(
2012
).
12.
R.
Myhre
,
S.
Coriani
, and
H.
Koch
,
J. Chem. Theory Comput.
12
,
2633
(
2016
).
13.
K.
Ueda
,
M.
Hoshino
,
T.
Tanaka
,
M.
Kitajima
,
H.
Tanaka
,
A.
De Fanis
,
Y.
Tamenori
,
M.
Ehara
,
F.
Oyagi
,
K.
Kuramoto
, and
H.
Nakatsuji
,
Phys. Rev. Lett.
94
,
243004
(
2005
).
14.
T.
Tanaka
,
K.
Ueda
,
R.
Feifel
,
L.
Karlsson
,
H.
Tanaka
,
M.
Hoshino
,
M.
Kitajima
,
M.
Ehara
,
R.
Fukuda
,
R.
Tamaki
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
435
,
182
(
2007
).
15.
C.
Ehlert
and
T.
Klamroth
,
J. Comput. Chem.
38
,
116
(
2017
).
16.
G.
Fronzoni
and
P.
Decleva
,
Chem. Phys.
237
,
21
(
1998
).
17.
G.
Fronzoni
,
M.
Stener
, and
P.
Decleva
,
Phys. Chem. Chem. Phys.
1
(
7
),
1405
(
1999
).
18.
O.
Plekan
,
V.
Feyer
,
R.
Richter
,
M.
Coreno
,
M.
de Simone
,
K. C.
Prince
,
A. B.
Trofimov
,
E. V.
Gromov
,
I. L.
Zaytseva
, and
J.
Schirmer
,
Chem. Phys.
347
,
360
(
2008
).
19.
J.
Wenzel
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Theory Comput.
10
,
4583
(
2014
).
20.
S. P.
Neville
,
V.
Averbukh
,
M.
Ruberti
,
R.
Yun
,
S.
Patchkovskii
,
M.
Chergui
,
A.
Stolow
, and
M. S.
Schuurman
,
J. Chem. Phys.
145
,
144307
(
2016
).
21.
S. P.
Neville
,
M.
Chergui
,
A.
Stolow
, and
M. S.
Schuurman
,
Phys. Rev. Lett.
120
,
243001
(
2018
).
22.
R. H.
Myhre
,
T. J. A.
Wolf
,
L.
Cheng
,
S.
Nandi
,
S.
Coriani
,
M.
Gühr
, and
H.
Koch
,
J. Chem. Phys.
148
,
064106
(
2018
).
23.
P.
Norman
and
A.
Dreuw
,
Chem. Rev.
118
,
7208
(
2018
).
24.
M. W.
Buckley
and
N. A.
Besley
,
Chem. Phys. Lett.
501
,
540
(
2011
).
25.
N. A.
Besley
and
F. A.
Asmuruf
,
Phys. Chem. Chem. Phys.
12
,
12024
(
2010
).
26.
A. R.
Attar
,
A.
Bhattacherjee
,
C. D.
Pemmaraju
,
K.
Schnorr
,
K. D.
Closser
,
D.
Prendergast
, and
S. R.
Leone
,
Science
356
,
54
(
2017
).
27.
L.
Triguero
,
L.
Pettersson
, and
H.
Ågren
,
Phys. Rev. B
58
,
8097
(
1998
).
28.
R.
Püttner
,
P.
Schmidt-Weber
,
T.
Kampen
,
C.
Kolczewski
,
K.
Hermann
, and
K.
Horn
,
J. Electron Spectrosc. Relat. Phenom.
215
,
16
(
2017
).
29.
C.
Ehlert
,
W. E. S.
Unger
, and
P.
Saalfrank
,
Phys. Chem. Chem. Phys.
16
,
14083
(
2014
).
30.
C.
Kolczewski
,
R.
Püttner
,
M.
Martins
,
A. S.
Schlachter
,
G.
Snell
,
M. M.
Sant’Anna
,
K.
Hermann
, and
G.
Kaindl
,
J. Chem. Phys.
124
,
034302
(
2006
).
31.
R.
Arrigo
,
M. E.
Schuster
,
Z.
Xie
,
Y.
Yi
,
G.
Wowsnick
,
L. L.
Sun
,
K.
Hermann
,
M.
Friedrich
,
P.
Kast
,
M.
Havecker
,
A.
Knop-Gericke
, and
R.
Schlögl
,
ACS Catal.
5
,
2740
(
2015
).
32.
X.-N.
Song
,
J.
Hu
,
S.-Y.
Wang
,
Y.
Ma
,
Y.
Zhou
, and
C.-K.
Wang
,
Phys. Chem. Chem. Phys.
19
,
32647
(
2017
).
33.
J. C.
Slater
and
K. H.
Johnson
,
Phys. Rev. B
5
,
844
(
1972
).
34.

In the Slater transition state method, half electrons are used for both ψi and all possible ψf as models for the half-way transition from a ground to all relevant core-excited states. The Slater transition method requires for a given i and for every final state f a separate calculation (with two “half electrons”), while TP-DFT requires a single KS calculation with N − 0.5 electrons only, with the half electron missing from ψi. The calculation can also be done with another fractional occupation number in ψi,35 which we do not do here.

35.
A. R.
Williams
,
R. A.
deGroot
, and
C. B.
Sommers
,
J. Chem. Phys.
63
,
628
(
1975
).
36.
D.
Prendergast
and
G.
Galli
,
Phys. Rev. Lett.
96
,
215502
(
2006
).
37.
M.
Leetmaa
,
M. P.
Ljungberg
,
A.
Lyubartsev
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
J. Electron. Spectrosc. Relat. Phenom.
177
,
135
(
2010
).
38.

The “excited core-hole” (XCH) method uses the orbitals of the first core-excited state to generate the spectrum.

39.
C.
Ehlert
,
M.
Holzweber
,
A.
Lippitz
,
W. E. S.
Unger
, and
P.
Saalfrank
,
Phys. Chem. Chem. Phys.
18
,
8654
(
2016
).
40.
StoBe-deMon version 3.3 (
2014
),
K.
Hermann
,
L. G. M.
Pettersson
,
M. E.
Casida
,
C.
Daul
,
A.
Goursot
,
A.
Koester
,
E.
Proynov
,
A.
St-Amant
, and
D. R.
Salahub
. Contributing authors
V.
Carravetta
,
H.
Duarte
,
C.
Friedrich
,
N.
Godbout
,
M.
Gruber
,
J.
Guan
,
C.
Jamorski
,
M.
Leboeuf
,
M.
Leetmaa
,
M.
Nyberg
,
S.
Patchkovskii
,
L.
Pedocchi
,
F.
Sim
,
L.
Triguero
, and
A.
Vela
.
41.

In detail, this is accomplished by first transforming the Kohn-Sham matrix from an atomic orbital to the molecular orbital basis. Then the off diagonal elements corresponding to the chosen orbitals are set to zero in every SCF step, this way keeping these orbitals frozen.

42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
43.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
44.
S.
Coriani
and
H.
Koch
,
J.Chem. Phys.
143
,
181103
(
2015
).
45.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
46.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
47.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2017
).
48.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
49.
O.
Takahashi
and
L. G. M.
Pettersson
,
J. Chem. Phys.
121
,
10339
(
2004
).
50.
D. A.
Kleier
,
T. A.
Halgren
,
J. H.
Hall
, and
W. N.
Lipscomb
,
J. Chem. Phys.
61
,
3905
(
1974
).
51.
G.
Füchsel
,
T.
Klamroth
,
J.
Dokić
, and
P.
Saalfrank
,
J. Phys. Chem.
110
,
16337
(
2006
), and references therein.
52.
F.
Cicogna
,
I.
Domenichelli
,
S.
Coiai
,
F.
Bellina
,
M.
Lessi
,
R.
Spiniello
, and
E.
Passaglia
,
Data Brief
6
,
562
(
2016
).
53.
J.-Å.
Andersson
,
R.
Petterson
, and
L.
Tegnér
,
J. Photochem.
20
,
17
(
1982
).
54.
C.
Gahl
,
R.
Schmidt
,
D.
Brete
,
E. R.
McNellis
,
W.
Freyer
,
R.
Carley
,
K.
Reuter
, and
M.
Weinelt
,
J. Am. Chem. Soc.
132
,
1831
(
2010
), see Fig. 2(b) there.
55.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
56.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
You do not currently have access to this content.