While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non-zero vibrational temperatures. Motivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all infrared transitions including bands becoming active due to resonances as well as overtone, combination, and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C16H10) and coronene (C24H12), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic density functional theory calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step toward calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.

1.
A.
Léger
and
J. L.
Puget
,
Astron. Astrophys.
137
,
L5
(
1984
).
2.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
,
Astrophys. J.
290
,
L25
(
1985
).
3.
A. G. G. M.
Tielens
,
Annu. Rev. Astron. Astrophys.
46
,
289
(
2008
).
4.
B.
Draine
,
EAS Publ. Ser.
46
,
29
(
2011
).
5.
C.
Pech
,
C.
Joblin
, and
P.
Boissel
,
Astron. Astrophys.
388
,
639
(
2002
).
6.
L.
Verstraete
,
C.
Pech
,
C.
Moutou
,
K.
Sellgren
,
C. M.
Wright
,
M.
Giard
,
A.
Léger
,
R.
Timmermann
, and
S.
Drapatz
,
Astron. Astrophys.
372
,
981
(
2001
).
7.
C.
Joblin
,
P.
Boissel
,
A.
Leger
,
L.
D’Hendecourt
, and
D.
Defourneau
,
Astron. Astrophys.
299
,
835
(
1995
).
8.
M.
Basire
,
P.
Parneix
,
F.
Calvo
,
T.
Pino
, and
P.
Bréchignac
,
J. Phys. Chem. A
113
,
6947
(
2009
).
9.
B.
Joalland
,
M.
Rapacioli
,
A.
Simon
,
C.
Joblin
,
C. J.
Marsden
, and
F.
Spiegelman
,
J. Phys. Chem. A
114
,
5846
(
2010
).
10.
P.
Parneix
,
M.
Basire
, and
F.
Calvo
,
J. Phys. Chem. A
117
,
3954
(
2013
).
11.
J. C. W.
Bauschlicher
,
C.
Boersma
,
A.
Ricca
,
A. L.
Mattioda
,
J.
Cami
,
E.
Peeters
,
F. S.
de Armas
,
G. P.
Saborido
,
D. M.
Hudgins
, and
L. J.
Allamandola
,
Astrophys. J. Suppl. Ser.
189
,
341
(
2010
).
12.
G.
Malloci
,
G.
Mulas
,
G.
Cappellini
, and
C.
Joblin
,
Chem. Phys.
340
,
43
(
2007
).
13.
P.
Cassam-Chenaï
,
J.-M.
Chiaramello
, and
P. G.
Mezey
,
J. Math. Chem.
44
,
981
(
2008
).
14.
F.
Pauzat
,
D.
Talbi
, and
Y.
Ellinger
,
Astron. Astrophys.
293
,
263
(
1995
).
15.
F.
Pauzat
,
D.
Talbi
, and
Y.
Ellinger
,
Astron. Astrophys.
319
,
318
(
1997
).
16.
C.
Boersma
,
C. W.
Bauschlicher
,
L. J.
Allamandola
,
A.
Ricca
,
E.
Peeters
, and
A. G. G. M.
Tielens
,
Astron. Astrophys.
511
,
A32
(
2010
).
17.
F.
Pauzat
,
EAS Publ. Ser.
46
,
75
(
2011
).
18.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
19.
J.
Tennyson
and
S. N.
Yurchenko
,
Mon. Not. R. Astron. Soc.
425
,
21
(
2012
).
20.
A. I.
Pavlyuchko
,
S. N.
Yurchenko
, and
J.
Tennyson
,
Mon. Not. R. Astron. Soc.
452
,
1702
(
2015
).
21.
P. S.
Thomas
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
146
,
204110
(
2017
).
22.
J. M.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
23.
T. K.
Roy
and
R. B.
Gerber
,
Phys. Chem. Chem. Phys.
15
,
9468
(
2013
).
24.
M. B.
Hansen
,
M.
Sparta
,
P.
Seidler
,
D.
Toffoli
, and
O.
Christiansen
,
J. Chem. Theory Comput.
6
,
235
(
2010
).
25.
P.
Cassam-Chenaï
and
J.
Liévin
,
J. Comput. Chem.
27
,
627
(
2006
).
26.
P.
Cassam-Chenaï
and
A.
Ilmane
,
J. Math. Chem.
50
,
652
(
2012
).
27.
I. M.
Mills
,
Mol. Spectrosc. Mod. Res.
1
,
115
(
1972
).
28.
F.
Gaw
,
A.
Willets
,
N.
Handy
, and
W.
Green
,
Advances in Molecular Vibrations and Collisions Dynamics
(
JAI Press, Inc.
,
Greenwich, CT
,
1991
), p.
169
.
29.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
François
,
J. Chem. Phys.
103
,
2589
(
1995
).
30.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
31.
M.
Piccardo
,
J.
Bloino
, and
V.
Barone
,
Int. J. Quantum Chem.
115
,
948
(
2015
).
32.
A.
Miani
,
E.
Cane
,
P.
Palmieri
,
A.
Trombetti
, and
N. C.
Handy
,
J. Chem. Phys.
112
,
248
(
2000
).
33.
O.
Pirali
,
M.
Vervloet
,
G.
Mulas
,
G.
Malloci
, and
C.
Joblin
,
Phys. Chem. Chem. Phys.
11
,
3443
(
2009
).
34.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
E.
Maltseva
,
A.
Petrignani
,
J.
Oomens
,
W. J.
Buma
,
T. J.
Lee
, and
A. G. G. M.
Tielens
,
J. Chem. Phys.
143
,
224314
(
2015
).
35.
M.
Basire
,
P.
Parneix
,
T.
Pino
,
P.
Bréchignac
, and
F.
Calvo
,
EAS Publ. Ser.
46
,
95
(
2011
).
36.
C.
Falvo
,
F.
Calvo
, and
P.
Parneix
,
J. Chem. Phys.
137
,
064303
(
2012
).
37.
G.
Féraud
,
T.
Pino
,
C.
Falvo
,
P.
Parneix
,
T.
Combriat
, and
P.
Bréchignac
,
J. Phys. Chem. Lett.
5
,
1083
(
2014
).
38.
G.
Mulas
and
C.
Falvo
, AnharmoniCaOs—Cagliari-Orsay model for anharmonic molecular spectra in 2nd order PT, https://sourceforge.net/projects/anharmonica/.
39.
E. L.
Sibert
 III
,
J. Chem. Phys.
88
,
4378
(
1988
).
40.
E. L.
Sibert
,
Comput. Phys. Commun.
51
,
149
(
1988
).
41.
A. B.
McCoy
,
I.
Sibert
, and
L.
Edwin
,
Mol. Phys.
77
,
697
(
1992
).
42.
43.
R.
Herman
and
W.
Shaffer
,
J. Chem. Phys.
16
,
453
(
1948
).
44.
B. T.
Darling
and
D. M.
Dennison
,
Phys. Rev.
57
,
128
(
1940
).
45.
J. J. M.
Cuppen
,
Numer. Math.
36
,
177
(
1980
).
46.
I.
Dhillon
, “
A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem
,” Technical Report No. UCB/CSD-97-971,
University of California
,
Berkeley, CA
,
1997
.
47.
G. L. G.
Sleijpen
and
H. A.
Van der Vorst
,
SIAM. J. Matrix Anal. Appl.
17
,
401
(
1996
).
48.
G. L. G.
Sleijpen
and
H. A.
Van der Vorst
,
SIAM Rev.
42
,
267
(
2000
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
,Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
N. J.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09 Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
50.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
51.
E.
Van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
(
2003
).
52.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
53.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
54.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
55.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
56.
E.
Cané
,
A.
Miani
, and
A.
Trombetti
,
J. Phys. Chem. A
111
,
8218
(
2007
).
57.
D.
Bégué
,
N.
Gohaud
,
C.
Pouchan
,
P.
Cassam-Chenaï
, and
J.
Liévin
,
J. Chem. Phys.
127
,
164115
(
2007
).
58.
P. S.
Thomas
and
T.
Carrington
,
J. Phys. Chem. A
119
,
13074
(
2015
).
59.
M.
Odunlami
,
V. L.
Bris
,
D.
Bégué
,
I.
Baraille
, and
O.
Coulaud
,
J. Chem. Phys.
146
,
214108
(
2017
).
60.
E.
Maltseva
,
A.
Petrignani
,
A.
Candian
,
C. J.
Mackie
,
X.
Huang
,
T. J.
Lee
,
A. G. G. M.
Tielens
,
J.
Oomens
, and
W. J.
Buma
,
Astrophys. J.
831
,
58
(
2016
).
61.
E.
Maltseva
,
A.
Petrignani
,
A.
Candian
,
C. J.
Mackie
,
X.
Huang
,
T. J.
Lee
,
A. G. G. M.
Tielens
,
J.
Oomens
, and
W. J.
Buma
,
Astrophys. J.
814
,
23
(
2015
).
62.
C.
Joblin
,
L.
D’Hendecourt
,
A.
Leger
, and
D.
Defourneau
,
Astron. Astrophys.
281
,
923
(
1994
).
63.
C.
Joblin
, “
Spectroscopie de molécules aromatiques. Test du modèle PAH en astrophysique
,” Ph.D. thesis,
Université Paris 7
,
1992
.
64.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
E.
Maltseva
,
A.
Petrignani
,
J.
Oomens
,
A. L.
Mattioda
,
W. J.
Buma
,
T. J.
Lee
, and
A. G. G. M.
Tielens
,
J. Chem. Phys.
145
,
084313
(
2016
).
65.
G.
Malloci
,
C.
Joblin
, and
G.
Mulas
,
Chem. Phys.
332
,
353
(
2007
); e-print arXiv:astro-ph/0701254.
66.
H.
Friha
,
G.
Féraud
,
T.
Troy
,
C.
Falvo
,
P.
Parneix
,
P.
Bréchignac
,
Z.
Dhaouadi
,
T. W.
Schmidt
, and
T.
Pino
,
J. Phys. Chem. A
117
,
13664
(
2013
).
67.
C.
Dateo
,
T.
Lee
, and
D.
Schwenke
,
J. Chem. Phys.
101
,
5853
(
1994
).
68.
R.
Fortenberry
,
X.
Huang
,
A.
Yachmenev
,
W.
Thiel
, and
T.
Lee
,
Chem. Phys. Lett.
574
,
1
(
2013
).
69.
A.
Candian
and
C. J.
Mackie
,
Int. J. Quantum Chem.
117
,
146
(
2017
).
70.
J.
Bloino
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theory Comput.
8
,
1015
(
2012
).
71.
D.
Bégué
,
A.
Benidar
, and
C.
Pouchan
,
Chem. Phys. Lett.
430
,
215
(
2006
).
72.
M.
Ringholm
,
D.
Jonsson
,
R.
Bast
,
B.
Gao
,
A. J.
Thorvaldsen
,
U.
Ekström
,
T.
Helgaker
, and
K.
Ruud
,
J. Chem. Phys.
140
,
034103
(
2014
).

Supplementary Material

You do not currently have access to this content.