We simulate the nonequilibrium ensemble dynamics of a biomolecule using the weighted ensemble method, which was introduced in molecular dynamics simulations by Huber and Kim and further developed by Zuckerman and co-workers. As the order parameters to characterize its conformational change, we here use the coordinates derived from the diffusion map (DM) method, one of the manifold learning techniques. As a concrete example, we study the kinetic properties of a small peptide, chignolin in explicit water, and calculate the conformational change between the folded and misfolded states in a nonequilibrium way. We find that the transition time scales thus obtained are comparable to those using previously employed hydrogen-bond distances as the order parameters. Since the DM method only uses the 3D Cartesian coordinates of a peptide, this shows that the DM method can extract the important distance information of the peptide without relying on chemical intuition. The time scales are compared well with the previous results using different techniques, non-Markovian analysis and core-set milestoning for a single long trajectory. We also find that the most significant DM coordinate turns out to extract a dihedral angle of glycine, and the previously studied relaxation modes are well correlated with the most significant DM coordinates.

1.
D. M.
Zuckerman
,
Statistical Physics of Biomolecules: An Introduction
(
CRC Press
,
2010
).
2.
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, edited by
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer
,
2014
).
3.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
110
(
1996
).
4.
D. M.
Zuckerman
and
L. T.
Chong
,
Annu. Rev. Biophys.
46
,
43
57
(
2017
).
5.
E.
Suárez
,
J. L.
Adelman
, and
D. M.
Zuckerman
,
J. Chem. Theory Comput.
12
,
3473
3481
(
2016
).
6.
E.
Suárez
,
A. J.
Pratt
,
L. T.
Chong
, and
D. M.
Zuckerman
,
Protein Sci.
25
,
67
78
(
2016
).
7.
D.
Chandler
,
Introduction to Mordern Statistical Mechanics
(
Oxford University Press
,
1987
).
8.
B.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
J. Chem. Phys.
132
,
054107
(
2010
).
9.
A.
Dickson
and
C. L.
Brooks
 III
,
J. Phys. Chem. B
118
,
3532
3542
(
2014
).
10.
S.
Brandt
,
F.
Sittel
,
M.
Ernst
, and
G.
Stock
,
J. Phys. Chem. Lett.
9
,
2144
2150
(
2018
).
11.
R. R.
Coifman
,
I. G.
Kevrekidis
,
S.
Lafon
,
M.
Maggioni
, and
B.
Nadler
,
Multiscale Model. Simul.
7
,
842
864
(
2008
).
12.
J. A.
Lee
and
M.
Verleysen
,
Nonlinear Dimensionality Reduction
(
Springer
,
2007
).
13.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
14.
A.
Mitsutake
and
H.
Takano
,
J. Chem. Phys.
143
,
124111
(
2015
).
15.
D.
Wales
,
Energy Landscapes: Applications to Clusters, Biomolecules, and Glasses
(
Cambridge University Press
,
2004
).
16.
E.
Weinan
,
Principles of Multiscale Modeling
(
Cambridge University Press
,
2011
).
17.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
2017
).
18.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
2017
).
19.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Pept. Sci.
60
,
96
123
(
2001
).
20.
J. B.
Tenenbaum
,
V.
de Silva
, and
J. C.
Langford
,
Science
290
,
2319
(
2000
).
21.
H.
Suetani
,
K.
Soejima
,
R.
Matsuoka
,
U.
Parlitz
, and
H.
Hata
,
Phys. Rev. E
86
,
036209
(
2012
).
22.
R.
Ito
and
T.
Yoshidome
,
Chem. Phys. Lett.
691
,
22
27
(
2018
).
23.
M. A.
Rohrdanz
,
W.
Zhang
,
M.
Maggioni
, and
C.
Clementi
,
J. Chem. Phys.
134
,
124116
(
2011
).
24.
L. V.
Nedialkova
,
M. A.
Amat
,
I. G.
Kevrekidis
, and
G.
Hummer
,
J. Chem. Phys.
141
,
114102
(
2014
).
25.
S.
Honda
,
K.
Yamasaki
,
Y.
Sawada
, and
H.
Mori
,
Structures
12
,
1507
(
2004
).
26.
D.
Satoh
,
K.
Shimizu
,
S.
Nakamura
, and
T.
Terada
,
FEBS Lett.
580
,
3422
(
2006
).
27.
K.
Moritsugu
,
T.
Terada
, and
A.
Kidera
,
J. Chem. Phys.
133
,
224105
(
2010
).
28.
A.
Suenaga
,
T.
Narumi
,
N.
Futatsugi
,
R.
Yanai
,
Y.
Ohno
,
N.
Okimoto
, and
M.
Taiji
,
Chem. - Asian J.
2
,
591
(
2007
).
29.
R.
Harada
and
A.
Kitao
,
J. Phys. Chem. B
115
,
8806
(
2011
).
30.
P.
Kuhrova
,
A.
De Simone
,
M.
Otyepka
, and
R. B.
Best
,
Biophys. J.
102
,
1897
(
2012
).
31.
S.
Honda
,
T.
Akiba
,
Y. S.
Kato
,
Y.
Sawada
,
M.
Sekijima
,
M.
Ishimura
,
A.
Ooishi
,
H.
Watanabe
,
T.
Odahara
, and
K.
Harata
,
J. Am. Chem. Soc.
130
,
15327
(
2008
).
32.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2010
).
33.
H.
Fujisaki
,
A.
Mitsutake
, and
L.
Maragliano
, “
Numerical investigation of kinetic properties of a small peptide using non-Markov type analysis and milestoning
” (unpublished).
34.
A.
Mitsutake
,
H.
Iijima
, and
H.
Takano
,
J. Chem. Phys.
135
,
164102
(
2011
).
35.
T.
Nagai
,
A.
Mitsutake
, and
H.
Takano
,
J. Phys. Soc. Jpn.
82
,
023803
(
2013
).
36.
H.
Takano
and
S.
Miyashita
,
J. Phys. Soc. Jpn.
64
,
3688
(
1995
).
37.
H.
Hirao
,
S.
Koseki
, and
H.
Takano
,
J. Phys. Soc. Jpn.
66
,
3399
3405
(
1997
).
38.
L.
Molgedey
and
H. G.
Schuster
,
Phys. Rev. Lett.
72
,
3634
3637
(
1994
).
39.
Y.
Naritomi
and
S.
Fuchigami
,
J. Chem. Phys.
134
,
065101
(
2011
).
40.
G.
Perez-Hernandez
,
F.
Paul
,
T.
Giorgino
,
G.
de Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
41.
A.
Mitsutake
and
H.
Takano
,
Biophys. Rev.
10
,
375
389
(
2018
).
42.
B.
Nadler
,
S.
Lafon
,
R. R.
Coifman
, and
I. G.
Kevrekidis
, in
Advances in Neural Information Processing Systems 18 (NIPS 2005)
(
Neural Information Processing Systems Foundation, Inc.
,
2005
), pp.
955
962
.
43.
W.
Zheng
,
M. A.
Rohrdanz
, and
C.
Clementi
,
J. Phys. Chem. B
117
,
12769
12776
(
2013
).
You do not currently have access to this content.