We use molecular dynamics simulations with the ReaxFF-lg potential to model the high pressure pyrolysis of carbon suboxide (C3O2) in mixture with argon as a pressure bath. We show that the reactive simulations catch the experimental behavior of the low-pressure detonation of C3O2 (around 10 bars in shock tube experiments) and allow extrapolations to the high-pressure range of solid-state explosive detonation (up to 60 GPa). While at low pressure carbonaceous nanostructures are formed through the aggregation of species such as carbon dimers C2, it appears that the high pressure deeply modifies the process, with the aggregation of growing CxOy heterostructures, in which the oxygen amount is driven by the pressure and the temperature. Pressures in the order of 60 GPa lead to high oxygen ratios, which prevent carbon atoms to get four carbon neighbors (the first condition to get a diamond structure). But a pressure lowering leads to a substantial carbon enrichment through CO2/CO release and facilitates the formation of pure sp3-carbon phases where diamond precursors can form. These results give new insights on the conditions leading to nanodiamonds during the detonation of carbon-rich high explosives.

1.
V. N.
Mochalin
,
O.
Shenderova
,
D.
Ho
, and
Y.
Gogotsi
, “
The properties and applications of nanodiamonds
,”
Nat. Nanotechnol.
7
(
1
),
11
23
(
2012
).
2.
A. M.
Schrand
,
S. A. C.
Hens
, and
O. A.
Shenderova
, “
Nanodiamond particles: Properties and perspectives for bioapplications
,”
Crit. Rev. Solid State Mater. Sci.
34
(
1-2
),
18
74
(
2009
).
3.
V. M.
Titov
 et al., “
Experience of using synchrotron radiation for studying detonation processes
,”
Combust., Explos., Shock Waves
47
(
6
),
615
626
(
2011
).
4.
N. P.
Satonkina
and
D. A.
Medvedev
, “
On the mechanism of carbon nanostructures formation at reaction of organic compounds at high pressure and temperature
,”
AIP Adv.
7
(
8
),
085101
(
2017
).
5.
C.
Zhang
 et al., “
Sequential molecular dynamics simulations: A strategy for complex chemical reactions and a case study on the graphitization of cooked 1,3,5-triamino-2,4,6-trinitrobenzene
,”
J. Phys. Chem. C
120
(
44
),
25237
25245
(
2016
).
6.
N.
Rom
 et al., “
First-principles-based reaction kinetics for decomposition of hot, dense liquid TNT from ReaxFF multiscale reactive dynamics simulations
,”
J. Phys. Chem. C
117
(
41
),
21043
21054
(
2013
).
7.
J. A.
Carter
,
J. M.
Zaug
,
A. J.
Nelson
,
M. R.
Armstrong
, and
M. R.
Manaa
, “
Ultrafast shock compression and shock-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene subjected to a subnanosecond-duration shock: An analysis of decomposition products
,”
J. Phys. Chem. A
116
(
20
),
4851
4859
(
2012
).
8.
L.
Zhang
,
S. V.
Zybin
,
A. C. T.
van Duin
,
S.
Dasgupta
,
W. A.
Goddard
, and
E. M.
Kober
, “
Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations
,”
J. Phys. Chem. A
113
(
40
),
10619
10640
(
2009
).
9.
N.
Pineau
,
L.
Soulard
,
J. H.
Los
, and
A.
Fasolino
, “
Theoretical study of the nucleation/growth process of carbon clusters under pressure
,”
J. Chem. Phys.
129
(
2
),
024708
(
2008
).
10.
A. V.
Eremin
, “
Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes
,”
Prog. Energy Combust. Sci.
38
(
1
),
1
40
(
2012
).
11.
A.
Emelianov
,
A.
Eremin
,
H.
Jander
,
H. G.
Wagner
, and
C.
Borchers
, “
Spectral and structural properties of carbon nanoparticle forming in C3O2 and C2H2 pyrolysis behind shock waves
,”
Proc. Combust. Inst.
29
(
2
),
2351
2357
(
2002
).
12.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
) (“30 July 2016” stable version).
13.
L.
Liu
,
Y.
Liu
,
S. V.
Zybin
,
H.
Sun
, and
W. A.
Goddard
, “
ReaxFF-lg: Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials
,”
J. Phys. Chem. A
115
(
40
),
11016
11022
(
2011
).
14.
A.
Strachan
,
E. M.
Kober
,
A. C. T.
van Duin
,
J.
Oxgaard
, and
W. A.
Goddard
 III
, “
Thermal decomposition of RDX from reactive molecular dynamics
,”
J. Chem. Phys.
122
(
5
),
054502
(
2005
).
15.
A.
Ellern
,
T.
Drews
, and
K.
Seppelt
, “
The structure of carbon suboxide, C3O2, in the solid state
,”
Z. Anorg. Allg. Chem.
627
(
1
),
73
76
(
2001
).
16.
Y.
Li
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
, “
Multistage reaction pathways in detonating RDX
,”
AIP Conf. Proc.
1793
(
1
),
030007
(
2017
).
17.
M. A.
Wood
,
M. J.
Cherukara
,
E. M.
Kober
, and
A.
Strachan
, “
Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale
,”
J. Phys. Chem. C
119
(
38
),
22008
22015
(
2015
).
18.
Y.
Long
and
J.
Chen
, “
Systematic study of the reaction kinetics for HMX
,”
J. Phys. Chem. A
119
(
18
),
4073
4082
(
2015
).
19.
M. R.
Manaa
,
E. J.
Reed
,
L. E.
Fried
, and
N.
Goldman
, “
Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives
,”
J. Am. Chem. Soc.
131
(
15
),
5483
5487
(
2009
).
20.
S. C.
Tiwari
,
K.
Nomura
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
, “
Multiple reaction pathways in shocked 2,4,6-triamino-1,3,5-trinitrobenzene crystal
,”
J. Phys. Chem. C
121
(
29
),
16029
16034
(
2017
).
21.
X.
Bidault
,
S.
Chaussedent
, and
W.
Blanc
, “
A simple transferable adaptive potential to study phase separation in large-scale xMgO-(1-x)SiO2 binary glasses
,”
J. Chem. Phys.
143
(
15
),
154501
(
2015
).
22.
J. D.
Gale
and
A. L.
Rohl
, “
The general utility lattice program (GULP)
,”
Mol. Simul.
29
(
5
),
291
341
(
2003
).
23.
G. J.
Keeler
and
D. N.
Batchelder
, “
Measurement of the elastic constants of argon from 3 to 77 degrees K
,”
J. Phys. C: Solid State Phys.
3
(
3
),
510
(
1970
).
24.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
(
1
),
33
38
(
1996
).
25.
G.
Friedrichs
and
H. G.
Wagner
, “
Investigation of the thermal decay of carbon suboxide
,”
Z. Phys. Chem.
203
(
1-2
),
1
14
(
1998
).
26.
N.
Goldman
,
E. J.
Reed
, and
L. E.
Fried
, “
Quantum mechanical corrections to simulated shock Hugoniot temperatures
,”
J. Chem. Phys.
131
(
20
),
204103
(
2009
).
27.
D. D.
Wagman
,
J. E.
Kilpatrick
,
W. J.
Taylor
,
K. S.
Pitzer
, and
F. D.
Rossini
, “
Heats, free energies, and equilibrium constants of some reactions involving O2, H2, H2O, C, CO, CO2, and CH4
,”
J. Res. Natl. Bur. Stand.
34
(
2
),
143
(
1945
).
28.
M.
Aghsaee
,
H.
Böhm
,
S. H.
Dürrstein
,
M.
Fikri
, and
C.
Schulz
, “
Experimental and modeling study of carbon suboxide decomposition behind reflected shock waves
,”
Phys. Chem. Chem. Phys.
14
(
3
),
1246
1252
(
2011
).
29.
A.
Emelianov
,
A.
Eremin
,
V.
Fortov
,
H.
Jander
,
A.
Makeich
, and
H. G.
Wagner
, “
Detonation wave driven by condensation of supersaturated carbon vapor
,”
Phys. Rev. E
79
(
3
),
035303
(
2009
).
30.
G. L.
Agafonov
,
M.
Nullmeier
,
P. A.
Vlasov
,
J.
Warnatz
, and
I. S.
Zaslonko
, “
Kinetic modeling of solid carbon particle formation and thermal decomposition during carbon suboxide pyrolysis behind shock waves
,”
Combust. Sci. Technol.
174
(
5-6
),
185
213
(
2002
).
31.
H. G.
Wagner
,
P. A.
Vlasov
,
K. J.
Dorge
,
A. V.
Eremin
,
I. S.
Zaslonko
, and
D.
Tanke
, “
Kinetics of carbon cluster formation in the course of C3O2pyrolysis
,”
Kinet. Catal.
42
(
5
),
583
593
(
2001
).
32.
D. L.
Ornellas
, “
Calorimetric determinations of the heat and products of detonation for explosives: October 1961 to April 1982
,” Technical Report No. AD-A409329,
April 1982
.
33.
H.
Liu
,
X.
Dong
, and
Y.-H.
He
, “
Reactive molecular dynamics simulations of carbon-containing clusters formation during pyrolysis of TNT
,”
Acta Phys.-Chim. Sin.
30
(
2
),
232
240
(
2014
).
34.
Z.-H.
He
,
J.
Chen
, and
Q.
Wu
, “
Initial decomposition of condensed-phase 1,3,5-triamino-2,4,6-trinitrobenzene under shock loading
,”
J. Phys. Chem. C
121
(
15
),
8227
8235
(
2017
).
35.
A.
Emelianov
 et al., “
Time and temperature dependence of carbon particle growth in various shock wave pyrolysis processes
,”
Proc. Combust. Inst.
30
(
1
),
1433
1440
(
2005
).
36.
E. B.
Watkins
 et al., “
Evolution of carbon clusters in the detonation products of the triaminotrinitrobenzene (TATB)-based explosive PBX 9502
,”
J. Phys. Chem. C
121
(
41
),
23129
23140
(
2017
).
37.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–The open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2010
).
38.
S.
Bastea
, “
Nanocarbon condensation in detonation
,”
Sci. Rep.
7
,
42151
(
2017
).
39.
V.
Pichot
,
B.
Risse
,
F.
Schnell
,
J.
Mory
, and
D.
Spitzer
, “
Understanding ultrafine nanodiamond formation using nanostructured explosives
,”
Sci. Rep.
3
,
2159
(
2013
).

Supplementary Material

You do not currently have access to this content.