Molecular simulation results at extreme temperatures and pressures can supplement experimental data when developing fundamental equations of state. Since most force fields are optimized to agree with vapor-liquid equilibria (VLE) properties, however, the reliability of the molecular simulation results depends on the validity/transferability of the force field at higher temperatures and pressures. As demonstrated in this study, although state-of-the-art united-atom Mie λ-6 potentials for normal and branched alkanes provide accurate estimates for VLE, they tend to over-predict pressures for dense supercritical fluids and compressed liquids. The physical explanation for this observation is that the repulsive barrier is too steep for the “optimal” united-atom Mie λ-6 potential parameterized with VLE properties. Bayesian inference confirms that no feasible combination of non-bonded parameters (ϵ, σ, and λ) is capable of simultaneously predicting saturated vapor pressures, saturated liquid densities, and pressures at high temperatures and densities. This conclusion has both practical and theoretical ramifications, as more realistic non-bonded potentials may be required for accurate extrapolation to high pressures of industrial interest.

1.
E. W.
Lemmon
,
M. L.
Huber
, and
M. O.
McLinden
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
, Version 9.1 (
National Institute of Standards and Technology
,
2013
).
2.
M.
Thol
,
G.
Rutkai
,
A.
Köster
,
R.
Lustig
,
R.
Span
, and
J.
Vrabec
, “
Equation of state for the Lennard-Jones fluid
,”
J. Phys. Chem. Ref. Data
45
(
2
),
023101
(
2016
).
3.
M.
Thol
,
G.
Rutkai
,
R.
Span
,
J.
Vrabec
, and
R.
Lustig
, “
Equation of state for the Lennard-Jones truncated and shifted model fluid
,”
Int. J. Thermophys.
36
(
1
),
25
43
(
2015
).
4.
G.
Rutkai
,
M.
Thol
,
R.
Span
, and
J.
Vrabec
, “
How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?
,”
Mol. Phys.
115
(
9-12
),
1104
1121
(
2017
).
5.
R.
Lustig
,
G.
Rutkai
, and
J.
Vrabec
, “
Thermodynamic correlation of molecular simulation data
,”
Mol. Phys.
113
(
9-10
),
910
931
(
2015
).
6.
G.
Rutkai
and
J.
Vrabec
, “
Empirical fundamental equation of state for phosgene based on molecular simulation data
,”
J. Chem. Eng. Data
60
(
10
),
2895
2905
(
2015
).
7.
G.
Rutkai
,
M.
Thol
,
R.
Lustig
,
R.
Span
, and
J.
Vrabec
, “
Communication: Fundamental equation of state correlation with hybrid data sets
,”
J. Chem. Phys.
139
(
4
),
041102
(
2013
).
8.
M.
Thol
,
F. H.
Dubberke
,
G.
Rutkai
,
T.
Windmann
,
A.
Köster
,
R.
Span
, and
J.
Vrabec
, “
Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data
,” in
Special Issue covering the Nineteenth Symposium on Thermophysical Properties
[
Fluid Phase Equilib.
418
,
133
151
(
2016
)].
9.
M.
Thol
,
G.
Rutkai
,
A.
Köster
,
F. H.
Dubberke
,
T.
Windmann
,
R.
Span
, and
J.
Vrabec
, “
Thermodynamic properties of octamethylcyclotetrasiloxane
,”
J. Chem. Eng. Data
61
(
7
),
2580
2595
(
2016
).
10.
M.
Thol
,
G.
Rutkai
,
A.
Köster
,
S.
Miroshnichenko
,
W.
Wagner
,
J.
Vrabec
, and
R.
Span
, “
Equation of state for 1,2-dichloroethane based on a hybrid data set
,”
Mol. Phys.
115
(
9-12
),
1166
1185
(
2017
).
11.
M.
Thol
,
G.
Rutkai
,
A.
Köster
,
M.
Kortmann
,
R.
Span
, and
J.
Vrabec
, “
Fundamental equation of state for ethylene oxide based on a hybrid dataset
,”
Chem. Eng. Sci.
121
,
87
99
(
2015
) (2013 Danckwerts Special Issue on Molecular Modelling in Chemical Engineering).
12.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. I. United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
(
14
),
2569
2577
(
1998
).
13.
M. G.
Martin
and
J.
Ilja Siepmann
, “
Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. II. United-atom description of branched alkanes
,”
J. Phys. Chem. B
103
(
21
),
4508
4517
(
1999
).
14.
M. S.
Shah
,
J.
Ilja Siepmann
, and
M.
Tsapatsis
, “
Transferable potentials for phase equilibria. Improved united-atom description of ethane and ethylene
,”
AIChE J.
63
(
11
),
5098
5110
(
2017
).
15.
J. R.
Errington
and
A. Z.
Panagiotopoulos
, “
A new intermolecular potential model for the n-alkane homologous series
,”
J. Phys. Chem. B
103
(
30
),
6314
6322
(
1999
).
16.
P.
Ungerer
,
C.
Beauvais
,
J.
Delhommelle
,
A.
Boutin
,
B.
Rousseau
, and
A. H.
Fuchs
, “
Optimization of the anisotropic united atoms intermolecular potential for n-alkanes
,”
J. Chem. Phys.
112
(
12
),
5499
5510
(
2000
).
17.
E.
Bourasseau
,
P.
Ungerer
,
A.
Boutin
, and
A. H.
Fuchs
, “
Monte Carlo simulation of branched alkanes and long chain n-alkanes with anisotropic united atoms intermolecular potential
,”
Mol. Simul.
28
(
4
),
317
336
(
2002
).
18.
J. J.
Potoff
and
D. A.
Bernard-Brunel
, “
Mie potentials for phase equilibria calculations: Applications to alkanes and perfluoroalkanes
,”
J. Phys. Chem. B
113
(
44
),
14725
14731
(
2009
).
19.
J. R.
Mick
,
M.
Soroush Barhaghi
,
B.
Jackman
,
L.
Schwiebert
, and
J. J.
Potoff
, “
Optimized Mie potentials for phase equilibria: Application to branched alkanes
,”
J. Chem. Eng. Data
62
(
6
),
1806
1818
(
2017
).
20.
A.
Hemmen
and
J.
Gross
, “
Transferable anisotropic united-atom force field based on the Mie potential for phase equilibrium calculations: n-alkanes and n-olefins
,”
J. Phys. Chem. B
119
(
35
),
11695
11707
(
2015
).
21.
D.
Weidler
and
J.
Gross
, “
Transferable anisotropic united-atom force field based on the Mie potential for phase equilibria: Aldehydes, ketones, and small cyclic alkanes
,”
Ind. Eng. Chem. Res.
55
(
46
),
12123
12132
(
2016
).
22.
C.
Herdes
,
T. S.
Totton
, and
E. A.
Müller
, “
Coarse grained force field for the molecular simulation of natural gases and condensates
,”
Fluid Phase Equilib.
406
,
91
100
(
2015
).
23.
K.
Stöbener
,
P.
Klein
,
M.
Horsch
,
K.
Kufer
, and
H.
Hasse
, “
Parametrization of two-center Lennard-Jones plus point-quadrupole force field models by multicriteria optimization
,”
Fluid Phase Equilib.
411
,
33
42
(
2016
).
24.
R. A.
Messerly
,
T. A.
Knotts
 IV
, and
W.
Vincent Wilding
, “
Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes
,”
J. Chem. Phys.
146
(
19
),
194110
(
2017
).
25.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press; Oxford University Press
,
Oxford, England, New York
,
1987
).
26.
P. A.
Gordon
, “
Development of intermolecular potentials for predicting transport properties of hydrocarbons
,”
J. Chem. Phys.
125
(
1
),
014504
(
2006
).
27.
G.
Galliéro
,
C.
Boned
,
A.
Baylaucq
, and
F.
Montel
, “
Molecular dynamics comparative study of Lennard-Jones α-6 and exponential α-6 potentials: Application to real simple fluids (viscosity and pressure)
,”
Phys. Rev. E
73
,
061201
(
2006
).
28.
R. L.
Rowley
and
T.
Pakkanen
, “
Determination of a methane intermolecular potential model for use in molecular simulations from ab initio calculations
,”
J. Chem. Phys.
110
(
7
),
3368
3377
(
1999
).
29.
R. L.
Rowley
,
Y.
Yang
, and
T. A.
Pakkanen
, “
Determination of an ethane intermolecular potential model for use in molecular simulations from ab initio calculations
,”
J. Chem. Phys.
114
(
14
),
6058
6067
(
2001
).
30.
J. M.
Hayes
,
J. C.
Greer
, and
D. A.
Morton–Blake
, “
A force–field description of short–range repulsions for high density alkane molecular dynamics simulations
,”
J. Comput. Chem.
25
(
16
),
1953
1966
(
2004
).
31.
L.
Kulakova
,
G.
Arampatzis
,
P.
Angelikopoulos
,
P.
Hadjidoukas
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations
,”
Sci. Rep.
7
(
1
),
16576
(
2017
).
32.
J. R.
Mick
,
M.
Soroush Barhaghi
,
B.
Jackman
,
K.
Rushaidat
,
L.
Schwiebert
, and
J. J.
Potoff
, “
Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes
,”
J. Chem. Phys.
143
(
11
),
114504
(
2015
).
33.
D.
Bücker
and
W.
Wagner
, “
A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa
,”
J. Phys. Chem. Ref. Data
35
(
1
),
205
266
(
2006
).
34.
E. W.
Lemmon
,
M. O.
McLinden
, and
W.
Wagner
, “
Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa
,”
J. Chem. Eng. Data
54
(
12
),
3141
3180
(
2009
).
35.
D.
Bücker
and
W.
Wagner
, “
Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane
,”
J. Phys. Chem. Ref. Data
35
(
2
),
929
1019
(
2006
).
36.
R.
Beckmueller
,
M.
Thol
, and
R.
Span
, “
Fundamental equation of state for n-octane
,” in
International Journal of Thermophysics
(
Springer
,
2018
).
37.
E. W.
Lemmon
and
R.
Span
, “
Short fundamental equations of state for 20 industrial fluids
,”
J. Chem. Eng. Data
51
(
3
),
785
850
(
2006
).
38.
T. M.
Blackham
,
A. K.
Lemmon
, and
E. W.
Lemmon
, “
Fundamental equation of state for isooctane
,” in
International Journal of Thermophysics
(
Springer
,
2018
).
39.
M. J.
Abraham
,
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
, and
GROMACS Development Team
, GROMACS User Manual version 2018, www.gromacs.org,
2018
.
40.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
(
1
),
637
649
(
1982
).
41.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
42.
B.
Hess
,
H.
Bekker
,
J.
Herman
,
C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
(
12
),
1463
1472
(
1998
).
43.
B.
Hess
, “
P-LINCS: A parallel linear constraint solver for molecular simulation
,”
J. Chem. Theory Comput.
4
(
1
),
116
122
(
2008
).
44.
S.
Mostafa Razavi
, “
Optimization of a transferable shifted force field for interfaces and inhomogenous fluids using thermodynamic integration
,” M.S. thesis,
The University of Akron
,
2016
.
45.
R. A.
Messerly
,
S.
Mostafa Razavi
, and
M. R.
Shirts
, “
Configuration-sampling-based surrogate models for rapid parameterization of non-bonded interactions
,”
J. Chem. Theory Comput.
14
(
6
),
3144
3162
(
2018
).
46.
S.
Mostafa Razavi
,
R. A.
Messerly
, and
J.
Richard Elliott
, “
Coexistence calculation using the isothermal-isochoric integration method
,”
Fluid Phase Equilibria
(
Elsevier
,
2018
).
47.
C.
Nieto-Draghi
,
A.
Bocahut
,
B.
Creton
,
P.
Have
,
A.
Ghoufi
,
A.
Wender
,
A.
Boutin
,
B.
Rousseau
, and
L.
Normand
, “
Optimisation of the dynamical behaviour of the anisotropic united atom model of branched alkanes: Application to the molecular simulation of fuel gasoline
,”
Mol. Simul.
34
(
2
),
211
230
(
2008
).
48.
F.
Rizzi
,
H. N.
Najm
,
B. J.
Debusschere
,
K.
Sargsyan
,
M.
Salloum
,
H.
Adalsteinsson
, and
O. M.
Knio
, “
Uncertainty quantification in MD simulations. Part II: Bayesian inference of force-field parameters
,”
Multiscale Model. Simul.
10
(
4
),
1460
1492
(
2012
).
49.
P.
Angelikopoulos
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework
,”
J. Chem. Phys.
137
(
14
),
144103
(
2012
).
50.
F.
Cailliez
and
P.
Pascal
, “
Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation
,”
J. Chem. Phys.
134
(
5
),
054124
(
2011
).
51.
S.
Wu
,
P.
Angelikopoulos
,
C.
Papadimitriou
,
R.
Moser
, and
P.
Koumoutsakos
, “
A hierarchical Bayesian framework for force field selection in molecular dynamics simulations
,”
Philos. Trans. R. Soc., A
374
(
2060
),
20150032
(
2016
).
52.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
53.
A.
Vetere
, “
The Riedel equation
,”
Ind. Eng. Chem. Res.
30
(
11
),
2487
2492
(
1991
).
54.
M.
Funke
,
R.
Kleinrahm
, and
W.
Wagner
, “
Measurement and correlation of the (P, ρ, T) relation of ethane II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve
,”
J. Chem. Thermodyn.
34
(
12
),
2017
2039
(
2002
).
55.
L. N.
Naden
and
M. R.
Shirts
, “
Rapid computation of thermodynamic properties over multidimensional nonbonded parameter spaces using adaptive multistate reweighting
,”
J. Chem. Theory Comput.
12
(
4
),
1806
1823
(
2016
).
56.
P. N.
Patrone
,
A.
Dienstfrey
,
A. R.
Browning
,
S.
Tucker
, and
S.
Christensen
, “
Uncertainty quantification in molecular dynamics studies of the glass transition temperature
,”
Polymer
87
,
246
259
(
2016
).
57.
M.
Schappals
,
A.
Mecklenfeld
,
L.
Kröger
,
V.
Botan
,
A.
Köster
,
S.
Stephan
,
E. J.
García
,
G.
Rutkai
,
G.
Raabe
,
P.
Klein
,
K.
Leonhard
,
C. W.
Glass
,
J.
Lenhard
,
J.
Vrabec
, and
H.
Hasse
, “
Round robin study: Molecular simulation of thermodynamic properties from models with internal degrees of freedom
,”
J. Chem. Theory Comput.
13
(
9
),
4270
4280
(
2017
).
58.
M.
Frenkel
,
R. D.
Chirico
,
V.
Diky
,
X.
Yan
,
Q.
Dong
, and
C.
Muzny
, “
Thermodata engine (TDE): Software implementation of the dynamic data evaluation concept
,”
J. Chem. Inf. Model.
45
(
4
),
816
838
(
2005
).
59.
K.
Stöbener
,
P.
Klein
,
S.
Reiser
,
M.
Horsch
,
K.-H.
Kufer
, and
H.
Hasse
, “
Multicriteria optimization of molecular force fields by Pareto approach
,”
Fluid Phase Equilib.
373
,
100
108
(
2014
).
60.
S.
Werth
,
K.
Stöbener
,
P.
Klein
,
K.-H.
Kufer
,
M.
Horsch
, and
H.
Hasse
, “
Molecular modelling and simulation of the surface tension of real quadrupolar fluids
,”
Chem. Eng. Sci.
121
,
110
117
(
2015
) (2013 Danckwerts Special Issue on Molecular Modelling in Chemical Engineering).
61.
H.
Jeffreys
,
The Theory of Probability
, 3rd ed. (
Clarendon Press
,
Oxford
,
2004
).
62.
P. G.
Hajigeorgiou
, “
The extended Lennard-Jones potential energy function: A simpler model for direct-potential-fit analysis
,”
J. Mol. Spectrosc.
330
,
4
13
(
2016
) (Part of special issue: Potentiology and Spectroscopy in Honor of Robert Le Roy).
63.
F.
Kalos
and
A. E.
Grosser
, “
Intermolecular potentials from differential cross sections: Ar + Ar
,”
Can. J. Chem.
50
(
6
),
892
896
(
1972
).
64.
G.
Rutkai
,
A.
Köster
,
G.
Guevara-Carrion
,
T.
Janzen
,
M.
Schappals
,
C. W.
Glass
,
M.
Bernreuther
,
A.
Wafai
,
S.
Stephan
,
M.
Kohns
,
S.
Reiser
,
S.
Deublein
,
M.
Horsch
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, release 3.0
,”
Comput. Phys. Commun.
221
,
343
351
(
2017
).

Supplementary Material

You do not currently have access to this content.