The accuracy of density functional theory (DFT) based kinetic models for electrocatalysis is diminished by spurious electron delocalization effects, which manifest as uncertainties in the predicted values of reaction and activation energies. In this work, we present a constrained DFT (CDFT) approach to alleviate overdelocalization effects in the Volmer-Heyrovsky mechanism of the hydrogen evolution reaction (HER). This method is applied a posteriori to configurations sampled along a reaction path to correct their relative stabilities. Concretely, the first step of this approach involves describing the reaction in terms of a set of diabatic states that are constructed by imposing suitable density constraints on the system. Refined reaction energy profiles are then recovered by performing a configuration interaction (CDFT-CI) calculation within the basis spanned by the diabatic states. After a careful validation of the proposed method, we examined HER catalysis on open-ended carbon nanotubes and discovered that CDFT-CI increased activation energies and decreased reaction energies relative to DFT predictions. We believe that a similar approach could also be adopted to treat overdelocalization effects in other electrocatalytic proton-coupled electron transfer reactions, e.g., in the oxygen reduction reaction.

1.
Y.
Zheng
,
Y.
Jiao
,
M.
Jaroniec
, and
S. Z.
Qiao
,
Angew. Chem., Int. Ed.
54
,
52
(
2015
).
2.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Nørskov
, and
T. F.
Jaramillo
,
Science
355
,
eaad4998
(
2017
).
3.
K. S.
Exner
,
I.
Sohrabnejad-Eskan
, and
H.
Over
,
ACS Catal.
8
,
1864
(
2018
).
4.
J. K.
Nørskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
,
Nat. Chem.
1
,
37
(
2009
).
5.
S.
Curtarolo
,
G. L.
Hart
,
M. B.
Nardelli
,
N.
Mingo
,
S.
Sanvito
, and
O.
Levy
,
Nat. Mater.
12
,
191
(
2013
).
6.
Y.
Jiao
,
Y.
Zheng
,
M.
Jaroniec
, and
S. Z.
Qiao
,
Chem. Soc. Rev.
44
,
2060
(
2015
).
7.
E.
Skúlason
,
V.
Tripkovic
,
M. E.
Björketun
,
S.
Gudmundsdóttir
,
G.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
H.
Jónsson
, and
J. K.
Nørskov
,
J. Phys. Chem. C
114
,
18182
(
2010
).
8.
W.
Gao
,
J. A.
Keith
,
J.
Anton
, and
T.
Jacob
,
J. Am. Chem. Soc.
132
,
18377
(
2010
).
9.
Y.-H.
Fang
and
Z.-P.
Liu
,
J. Am. Chem. Soc.
132
,
18214
(
2010
).
10.
C. P.
Plaisance
and
R. A.
van Santen
,
J. Am. Chem. Soc.
137
,
14660
(
2015
).
11.
H. A.
Hansen
,
V.
Viswanathan
, and
J. K.
Nørskov
,
J. Phys. Chem. C
118
,
6706
(
2014
).
12.
R.
Jinnouchi
and
R.
Asahi
,
J. Phys. Chem. Lett.
8
,
4279
(
2017
).
13.
X.
Ma
,
Z.
Li
,
L. E. K.
Achenie
, and
H.
Xin
,
J. Phys. Chem. Lett.
6
,
3528
(
2015
).
14.
R.
Gasper
,
H.
Shi
, and
A.
Ramasubramaniam
,
J. Phys. Chem. C
121
,
5612
(
2017
).
15.
Y.
Xu
,
M.
Kraft
, and
R.
Xu
,
Chem. Soc. Rev.
45
,
3039
(
2016
).
16.
K.
Chan
and
J. K.
Nørskov
,
J. Phys. Chem. Lett.
7
,
1686
(
2016
).
17.
S.
Sakong
and
A.
Groß
,
ACS Catal.
6
,
5575
(
2016
).
18.
R.
Jinnouchi
,
K.
Kodama
, and
Y.
Morimoto
,
Curr. Opin. Electrochem.
8
,
103
(
2018
).
19.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
20.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
).
21.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
2
,
765
(
2006
).
22.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
,
Chem. Rev.
112
,
321
(
2012
).
23.
A.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
111
,
4672
(
1999
).
24.
S.
Hammes-Schiffer
and
A. V.
Soudackov
,
J. Phys. Chem. B
112
,
14108
(
2008
).
25.
S.
Hammes-Schiffer
and
A. A.
Stuchebrukhov
,
Chem. Rev.
110
,
6939
(
2010
).
26.
Q.
Wu
,
C.-L.
Cheng
, and
T.
Van Voorhis
,
J. Chem. Phys.
127
,
164119
(
2007
).
27.
Q.
Wu
,
B.
Kaduk
, and
T.
Van Voorhis
,
J. Chem. Phys.
130
,
034109
(
2009
).
28.
N.
Holmberg
and
K.
Laasonen
,
J. Phys. Chem. Lett.
6
,
3956
(
2015
).
30.
A.
Migliore
,
N. F.
Polizzi
,
M. J.
Therien
, and
D. N.
Beratan
,
Chem. Rev.
114
,
3381
(
2014
).
31.
A. V.
Soudackov
and
S.
Hammes-Schiffer
,
Chem. Phys. Lett.
299
,
503
(
1999
).
32.
C. C.
Marston
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
91
,
3571
(
1989
).
33.
K.
Drukker
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
107
,
363
(
1997
).
34.
S. P.
Webb
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
113
,
5214
(
2000
).
35.
A. V.
Barzykin
,
P. A.
Frantsuzov
,
K.
Seki
, and
M.
Tachiya
, “
Solvent effects in nonadiabatic electron-transfer reactions: Theoretical aspects
,” in
Advances in Chemical Physics
(
Wiley-Blackwell
,
2003
), Chap. 9, pp.
511
616
.
36.
A.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
113
,
2385
(
2000
).
37.
Y.
Georgievskii
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
113
,
10438
(
2000
).
38.
J. E.
Subotnik
,
J.
Vura-Weis
,
A. J.
Sodt
, and
M. A.
Ratner
,
J. Phys. Chem. A
114
,
8665
(
2010
).
39.
N.
Holmberg
and
K.
Laasonen
,
J. Chem. Theory Comput.
13
,
587
(
2017
).
40.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
41.
J.
Řezáč
and
A.
de la Lande
,
J. Chem. Theory Comput.
11
,
528
(
2015
).
42.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
118
,
4365
(
2003
).
43.
D. D.
O’Regan
and
G.
Teobaldi
,
Phys. Rev. B
94
,
035159
(
2016
).
44.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
45.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
46.
A.
Sirjoosingh
and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
115
,
2367
(
2011
).
47.
A. V.
Soudackov
and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
5
,
3274
(
2014
).
48.
A. K.
Harshan
,
T.
Yu
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
137
,
13545
(
2015
).
49.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
50.
A.
Sirjoosingh
and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
7
,
2831
(
2011
).
51.
B.
Auer
,
L. E.
Fernandez
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
133
,
8282
(
2011
).
52.
P.
Pyykkö
and
M.
Atsumi
,
Chem. - Eur. J.
15
,
186
(
2009
).
53.
P.
Pyykkö
and
M.
Atsumi
,
Chem. - Eur. J.
15
,
12770
(
2009
).
54.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
55.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
56.
B. J.
Lynch
,
P. L.
Fast
,
M.
Harris
, and
D. G.
Truhlar
,
J. Phys. Chem. A
104
,
4811
(
2000
).
57.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
58.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
59.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
60.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
61.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
62.
A.
Willand
,
Y. O.
Kvashnin
,
L.
Genovese
,
Á.
Vázquez-Mayagoitia
,
A. K.
Deb
,
A.
Sadeghi
,
T.
Deutsch
, and
S.
Goedecker
,
J. Chem. Phys.
138
,
104109
(
2013
).
63.
L.
Genovese
,
T.
Deutsch
,
A.
Neelov
,
S.
Goedecker
, and
G.
Beylkin
,
J. Chem. Phys.
125
,
074105
(
2006
).
64.
A.
Migliore
,
J. Chem. Theory Comput.
7
,
1712
(
2011
).
65.
S.
Hammes-Schiffer
,
Energy Environ. Sci.
5
,
7696
(
2012
).
66.
A.
Cembran
,
L.
Song
,
Y.
Mo
, and
J.
Gao
,
J. Chem. Theory Comput.
5
,
2702
(
2009
).
67.
A.
Grofe
,
Z.
Qu
,
D. G.
Truhlar
,
H.
Li
, and
J.
Gao
,
J. Chem. Theory Comput.
13
,
1176
(
2017
).
68.
B.
Kaduk
,
T.
Tsuchimochi
, and
T.
Van Voorhis
,
J. Chem. Phys.
140
,
18A503
(
2014
).

Supplementary Material

You do not currently have access to this content.