We study theoretically and numerically, the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance toward shear and bending. Using a combination of the multipole expansion and Faxén’s theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self mobilities and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where very good agreement is obtained over the whole range of applied frequencies.

1.
Y.-C.
Fung
,
Biomechanics: Mechanical Properties of Living Tissues
(
Springer Science & Business Media
,
2013
).
2.
M. L.
Gardel
,
M. T.
Valentine
, and
D. A.
Weitz
, “
Microrheologys
,” in
Microscale Diagnostic Techniques
(
Springer
,
Berlin Heidelberg
,
2005
), pp.
1
49
.
3.
P.
Cicuta
and
A. M.
Donald
, “
Microrheology: A review of the method and applications
,”
Soft Matter
3
,
1449
1455
(
2007
).
4.
T. M.
Squires
and
T. G.
Mason
, “
Fluid mechanics of microrheology
,”
Annu. Rev. Fluid Mech.
42
,
413
(
2009
).
5.
D.
Wirtz
, “
Particle-tracking microrheology of living cells: Principles and applications
,”
Annu. Rev. Biophys.
38
,
301
326
(
2009
).
6.
T. G.
Mason
and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
(
1995
).
7.
B.
Schnurr
,
F.
Gittes
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations
,”
Macromolecules
30
,
7781
7792
(
1997
).
8.
T. G.
Mason
,
K.
Ganesan
,
J. H.
Van Zanten
,
D.
Wirtz
, and
S. C.
Kuo
, “
Particle tracking microrheology of complex fluids
,”
Phys. Rev. Lett.
79
,
3282
(
1997
).
9.
D. T.
Chen
,
E. R.
Weeks
,
J. C.
Crocker
,
M. F.
Islam
,
R.
Verma
,
J.
Gruber
,
A. J.
Levine
,
T. C.
Lubensky
, and
A. G.
Yodh
, “
Rheological microscopy: Local mechanical properties from microrheology
,”
Phys. Rev. Lett.
90
,
108301
(
2003
).
10.
A. W. C.
Lau
,
B. D.
Hoffman
,
A.
Davies
,
J. C.
Crocker
, and
T. C.
Lubensky
, “
Microrheology, stress fluctuations, and active behavior of living cells
,”
Phys. Rev. Lett.
91
,
198101
(
2003
).
11.
C.
Wilhelm
, “
Out-of-equilibrium microrheology inside living cells
,”
Phys. Rev. Lett.
101
,
028101
(
2008
).
12.
G.
Foffano
,
J. S.
Lintuvuori
,
K.
Stratford
,
M. E.
Cates
, and
D.
Marenduzzo
, “
Colloids in active fluids: Anomalous microrheology and negative drag
,”
Phys. Rev. Lett.
109
,
028103
(
2012
).
13.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
Mineola, New York
,
2013
).
14.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
Netherlands
,
2012
), Vol. 1.
15.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
1996
).
16.
A.
Meyer
,
A.
Marshall
,
B. G.
Bush
, and
E. M.
Furst
, “
Laser tweezer microrheology of a colloidal suspension
,”
J. Rheol.
50
,
77
92
(
2006
).
17.
B.
Lin
,
J.
Yu
, and
S. A.
Rice
, “
Direct measurements of constrained Brownian motion of an isolated sphere between two walls
,”
Phys. Rev. E
62
,
3909
3919
(
2000
).
18.
E. R.
Dufresne
,
D.
Altman
, and
D. G.
Grier
, “
Brownian dynamics of a sphere between parallel walls
,”
Europhys. Lett.
53
,
264
(
2001
).
19.
E.
Schäffer
,
S. F.
Nørrelykke
, and
J.
Howard
, “
Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers
,”
Langmuir
23
,
3654
3665
(
2007
).
20.
K.
Kihm
,
A.
Banerjee
,
C.
Choi
, and
T.
Takagi
, “
Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)
,”
Exp. Fluids
37
,
811
824
(
2004
).
21.
R.
Sadr
,
H.
Li
, and
M.
Yoda
, “
Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination
,”
Exp. Fluids
38
,
90
98
(
2005
).
22.
B.
Cui
,
H.
Diamant
, and
B.
Lin
, “
Screened hydrodynamic interaction in a narrow channel
,”
Phys. Rev. Lett.
89
,
188302
(
2002
).
23.
H. B.
Eral
,
J. M.
Oh
,
D.
van den Ende
,
F.
Mugele
, and
M. H. G.
Duits
, “
Anisotropic and hindered diffusion of colloidal particles in a closed cylinder
,”
Langmuir
26
,
16722
16729
(
2010
).
24.
P.
Sharma
,
S.
Ghosh
, and
S.
Bhattacharya
, “
A high-precision study of hindered diffusion near a wall
,”
Appl. Phys. Lett.
97
,
104101
(
2010
).
25.
S. L.
Dettmer
,
S.
Pagliara
,
K.
Misiunas
, and
U. F.
Keyser
, “
Anisotropic diffusion of spherical particles in closely confining microchannels
,”
Phys. Rev. E
89
,
062305
(
2014
).
26.
B.
Tränkle
,
D.
Ruh
, and
A.
Rohrbach
, “
Interaction dynamics of two diffusing particles: Contact times and influence of nearby surfaces
,”
Soft Matter
12
,
2729
2736
(
2016
).
27.
V. N.
Michailidou
,
G.
Petekidis
,
J. W.
Swan
, and
J. F.
Brady
, “
Dynamics of concentrated hard-sphere colloids near a wall
,”
Phys. Rev. Lett.
102
,
068302
(
2009
).
28.
S. A.
Rogers
,
M.
Lisicki
,
B.
Cichocki
,
J. K. G.
Dhont
, and
P. R.
Lang
, “
Rotational diffusion of spherical colloids close to a wall
,”
Phys. Rev. Lett.
109
,
098305
(
2012
).
29.
M.
Lisicki
,
B.
Cichocki
,
J. K. G.
Dhont
, and
P. R.
Lang
, “
One-particle correlation function in evanescent wave dynamic light scattering
,”
J. Chem. Phys.
136
,
204704
(
2012
).
30.
P.
Huang
and
K. S.
Breuer
, “
Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry
,”
Phys. Rev. E
76
,
046307
(
2007
).
31.
G.
Perkins
and
R.
Jones
, “
Hydrodynamic interaction of a spherical particle with a planar boundary I. Free surface
,”
Physica A
171
,
575
604
(
1991
).
32.
B. U.
Felderhof
, “
Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion
,”
J. Phys. Chem. B
109
,
21406
21412
(
2005
).
33.
B.
Felderhof
, “
Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid
,”
J. Chem. Phys.
123
,
184903
(
2005
).
34.
B.
Cichocki
and
R. B.
Jones
, “
Image representation of a spherical particle near a hard wall
,”
Physica A
258
,
273
302
(
1998
).
35.
J. W.
Swan
and
J. F.
Brady
, “
Simulation of hydrodynamically interacting particles near a no-slip boundary
,”
Phys. Fluids
19
,
113306
(
2007
).
36.
J. W.
Swan
and
J. F.
Brady
, “
Particle motion between parallel walls: Hydrodynamics and simulation
,”
Phys. Fluids
22
,
103301
(
2010
).
37.
T.
Franosch
and
S.
Jeney
, “
Persistent correlation of constrained colloidal motion
,”
Phys. Rev. E
79
,
031402
(
2009
).
38.
S. H.
Lee
,
R. S.
Chadwick
, and
L. G.
Leal
, “
Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz
,”
J. Fluid Mech.
93
,
705
726
(
1979
).
39.
S. H.
Lee
and
L. G.
Leal
, “
Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates
,”
J. Fluid Mech.
98
,
193
224
(
1980
).
40.
C.
Berdan
 II
and
L. G.
Leal
, “
Motion of a sphere in the presence of a deformable interface: I. Perturbation of the interface from flat: The effects on drag and torque
,”
J. Colloid Interface Sci.
87
,
62
80
(
1982
).
41.
J.
Urzay
,
S. G.
Llewellyn Smith
, and
B. J.
Glover
, “
The elastohydrodynamic force on a sphere near a soft wall
,”
Phys. Fluids
19
,
103106
(
2007
).
42.
Y. O.
Fuentes
,
S.
Kim
, and
D. J.
Jeffrey
, “
Mobility functions for two unequal viscous drops in Stokes flow. I. Axisymmetric motions
,”
Phys. Fluids
31
,
2445
2455
(
1988
).
43.
Y. O.
Fuentes
,
S.
Kim
, and
D. J.
Jeffrey
, “
Mobility functions for two unequal viscous drops in Stokes flow. II. Asymmetric motions
,”
Phys. Fluids A
1
,
61
76
(
1989
).
44.
E.
Lauga
and
T. M.
Squires
, “
Brownian motion near a partial-slip boundary: A local probe of the no-slip condition
,”
Phys. Fluids
17
,
103102
(
2005
).
45.
E.
Lauga
,
M.
Brenner
, and
H.
Stone
, “
Microfluidics: The no-slip boundary condition
,”
Springer Handbook of Experimental Fluid Mechanics
(
Springer
,
2007
), pp.
1219
1240
.
46.
B. U.
Felderhof
, “
Hydrodynamic force on a particle oscillating in a viscous fluid near a wall with dynamic partial-slip boundary condition
,”
Phys. Rev. E
85
,
046303
(
2012
).
47.
B.
Felderhof
, “
Mobility of a particle immersed in a liquid film between two fluids
,”
J. Chem. Phys.
124
,
124705
(
2006
).
48.
K.
Danov
,
R.
Aust
,
F.
Durst
, and
U.
Lange
, “
Slow motions of a solid spherical particle close to a viscous interface
,”
Int. J. Multiphase Flow
21
,
1169
1189
(
1995
).
49.
K.
Danov
,
T.
Gurkov
,
H.
Raszillier
, and
F.
Durst
, “
Stokes flow caused by the motion of a rigid sphere close to a viscous interface
,”
Chem. Eng. Sci.
53
,
3413
3434
(
1998
).
50.
R.
Shail
, “
On the slow motion of a solid submerged in a fluid with a surfactant surface film
,”
J. Eng. Math.
17
,
239
256
(
1983
).
51.
J.
Bławzdziewicz
,
V.
Cristini
, and
M.
Loewenberg
, “
Stokes flow in the presence of a planar interface covered with incompressible surfactant
,”
Phys. Fluids
11
,
251
258
(
1999
).
52.
J.
Bławzdziewicz
,
M.
Ekiel-Jeżewska
, and
E.
Wajnryb
, “
Hydrodynamic coupling of spherical particles to a planar fluid-fluid interface: Theoretical analysis
,”
J. Chem. Phys.
133
,
114703
(
2010
).
53.
T.
Bickel
, “
Brownian motion near a liquid-like membrane
,”
Eur. Phys. J. E
20
,
379
385
(
2006
).
54.
B. U.
Felderhof
, “
Effect of surface tension and surface elasticity of a fluid-fluid interface on the motion of a particle immersed near the interface
,”
J. Chem. Phys.
125
,
144718
(
2006
).
55.
T.
Bickel
, “
Hindered mobility of a particle near a soft interface
,”
Phys. Rev. E
75
,
041403
(
2007
).
56.
D.
Takagi
and
N. J.
Balmforth
, “
Peristaltic pumping of rigid objects in an elastic tube
,”
J. Fluid Mech.
672
,
219
244
(
2011
).
57.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Axisymmetric motion of a solid particle nearby a spherical elastic membrane
,”
Phys. Rev. E
95
,
013108
(
2017
).
58.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Brownian motion near an elastic cell membrane: A theoretical study
,”
Eur. Phys. J. E
41
,
19
(
2018
).
59.
M.
Weiss
,
M.
Elsner
,
F.
Kartberg
, and
T.
Nilsson
, “
Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells
,”
Biophys. J.
87
,
3518
3524
(
2004
).
60.
A.
Daddi-Moussa-Ider
,
A.
Guckenberger
, and
S.
Gekle
, “
Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles
,”
Phys. Rev. E
93
,
012612
(
2016
).
61.
A.
Daddi-Moussa-Ider
,
A.
Guckenberger
, and
S.
Gekle
, “
Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation
,”
Phys. Fluids
28
,
071903
(
2016
).
62.
H.
Kress
,
E. H. K.
Stelzer
,
G.
Griffiths
, and
A.
Rohrbach
, “
Control of relative radiation pressure in optical traps: Application to phagocytic membrane binding studies
,”
Phys. Rev. E
71
,
061927
(
2005
).
63.
R.
Shlomovitz
,
A.
Evans
,
T.
Boatwright
,
M.
Dennin
, and
A.
Levine
, “
Measurement of monolayer viscosity using noncontact microrheology
,”
Phys. Rev. Lett.
110
,
137802
(
2013
).
64.
T.
Boatwright
,
M.
Dennin
,
R.
Shlomovitz
,
A. A.
Evans
, and
A. J.
Levine
, “
Probing interfacial dynamics and mechanics using submerged particle microrheology. II. Experiment
,”
Phys. Fluids
26
,
071904
(
2014
).
65.
F.
Jünger
,
F.
Kohler
,
A.
Meinel
,
T.
Meyer
,
R.
Nitschke
,
B.
Erhard
, and
A.
Rohrbach
, “
Measuring local viscosities near plasma membranes of living cells with photonic force microscopy
,”
Biophys. J.
109
,
869
882
(
2015
).
66.
M.
Irmscher
,
A. M.
de Jong
,
H.
Kress
, and
M. W. J.
Prins
, “
Probing the cell membrane by magnetic particle actuation and euler angle tracking
,”
Biophys. J.
102
,
698
708
(
2012
).
67.
D.
Mizuno
,
Y.
Kimura
, and
R.
Hayakawa
, “
Dynamic electrophoretic mobility of colloidal particles measured by the newly developed method of quasi-elastic light scattering in a sinusoidal electric field
,”
Langmuir
16
,
9547
9554
(
2000
).
68.
Y.
Kimura
,
T.
Mori
,
A.
Yamamoto
, and
D.
Mizuno
, “
Hierarchical transport of nanoparticles in a lyotropic lamellar phase
,”
J. Phys.: Condens. Matter
17
,
S2937
(
2005
).
69.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Hydrodynamic interaction between particles near elastic interfaces
,”
J. Chem. Phys.
145
,
014905
(
2016
).
70.
T. M.
Squires
and
M. P.
Brenner
, “
Like-charge attraction and hydrodynamic interaction
,”
Phys. Rev. Lett.
85
,
4976
(
2000
).
71.
M.
Reichert
and
H.
Stark
, “
Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials
,”
Phys. Rev. E
69
,
031407
(
2004
).
72.
R.
Skalak
,
A.
Tozeren
,
R. P.
Zarda
, and
S.
Chien
, “
Strain energy function of red blood cell membranes
,”
Biophys. J.
13
(
3
),
245
264
(
1973
).
73.
W.
Helfrich
, “
Elastic properties of lipid bilayers—theory and possible experiments
,”
Z. Naturforsch. C.
28
,
693
(
1973
).
74.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
75.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
76.
G.
Lowe
,
M.
Meister
, and
H. C.
Berg
, “
Rapid rotation of flagellar bundles in swimming bacteria
,”
Nature
325
,
637
640
(
1987
).
77.
Y.
Magariyama
,
S.
Sugiyama
, and
S.
Kudo
, “
Bacterial swimming speed and rotation rate of bundled flagella
,”
FEMS Microbiol. Lett.
199
,
125
129
(
2001
).
78.
R. M.
Macnab
, “
Bacterial flagella rotating in bundles: A study in helical geometry
,”
Proc. Natl. Acad. Sci. U. S. A.
74
,
221
225
(
1977
).
79.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
412
(
2006
).
80.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
81.
E.
Wajnryb
,
K. A.
Mizerski
,
P. J.
Zuk
, and
P.
Szymczak
, “
Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors
,”
J. Fluid Mech.
731
,
R3
(
2013
).
82.
Y. W.
Kim
and
R. R.
Netz
, “
Electro-osmosis at inhomogeneous charged surfaces: Hydrodynamic versus electric friction
,”
J. Chem. Phys.
124
,
114709
(
2006
).
83.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech.
180
,
21
49
(
1987
).
84.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Mobility of an axisymmetric particle near an elastic interface
,”
J. Fluid Mech.
811
,
210
233
(
2017
).
85.
E.
Foessel
,
J.
Walter
,
A.-V.
Salsac
, and
D.
Barthèse-Biesel
, “
Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow
,”
J. Fluid Mech.
672
,
477
486
(
2011
).
86.
C.
Dupont
,
A.-V.
Salsac
,
D.
Barthès-Biesel
,
M.
Vidrascu
, and
P.
Le Tallec
, “
Influence of bending resistance on the dynamics of a spherical capsule in shear flow
,”
Phys. Fluids
27
,
051902
(
2015
).
87.
D.
Barthès-Biesel
, “
Motion and deformation of elastic capsules and vesicles in flow
,”
Annu. Rev. Fluid Mech.
48
,
25
52
(
2016
).
88.
E.
Lac
,
D.
Barthès-Biesel
,
N. A.
Pelekasis
, and
J.
Tsamopoulos
, “
Spherical capsules in three-dimensional unbounded Stokes flows: Effect of the membrane constitutive law and onset of buckling
,”
J. Fluid Mech.
516
,
303
334
(
2004
).
89.
C. T.
Lim
,
E. H.
Zhou
, and
S. T.
Quek
, “
Mechanical models for living cells—A review
,”
J. Biomech.
39
,
195
216
(
2006
).
90.
T.
Krüger
,
Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear
(
Springer Science & Business Media
,
Heidelberg
,
2012
).
91.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer
,
2017
).
92.
A. E.
Green
and
J. C.
Adkins
,
Large Elastic Deformations and Non-Linear Continuum Mechanics
(
Oxford University Press
,
1960
).
93.
L.
Zhu
,
Simulation of Individual Cells in Flow
(
KTH Royal Institute of Technology
,
2014
).
94.
L.
Zhu
and
L.
Brandt
, “
The motion of a deforming capsule through a corner
,”
J. Fluid Mech.
770
,
374
397
(
2015
).
95.
U.
Seifert
, “
Configurations of fluid membranes and vesicles
,”
Adv. Phys.
46
,
13
137
(
1997
).
96.
A.
Guckenberger
and
S.
Gekle
, “
Theory and algorithms to compute Helfrich bending forces: A review
,”
J. Phys.: Condens. Matter
29
,
203001
(
2017
).
97.
J.
Rotne
and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
98.
D. L.
Ermak
and
J.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
1360
(
1978
).
99.
P. J.
Zuk
,
E.
Wajnryb
,
K. A.
Mizerski
, and
P.
Szymczak
, “
Rotne–Prager–Yamakawa approximation for different-sized particles in application to macromolecular bead models
,”
J. Fluid Mech.
741
,
R5
(
2014
).
100.
M.
Abramowitz
,
I. A.
Stegun
, et al.,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
), Vol. 1.
101.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall—I motion through a quiescent fluid
,”
Chem. Eng. Sci.
22
,
637
651
(
1967
).
102.
R.
Di Leonardo
,
D.
Dell’Arciprete
,
L.
Angelani
, and
V.
Iebba
, “
Swimming with an image
,”
Phys. Rev. Lett.
106
,
038101
(
2011
).
103.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
C.
Hoell
, and
H.
Löwen
, “
Swimming trajectories of a three-sphere microswimmer near a wall
,”
J. Chem. Phys.
148
,
134904
(
2018
).
104.
D.
Lopez
and
E.
Lauga
, “
Dynamics of swimming bacteria at complex interfaces
,”
Phys. Fluids
26
,
071902
(
2014
).
105.
D.
Abreu
,
M.
Levant
,
V.
Steinberg
, and
U.
Seifert
, “
Fluid vesicles in flow
,”
Adv. Colloid Interface Sci.
208
,
129
141
(
2014
).
106.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
A. J. T. M.
Mathijssen
,
C.
Hoell
,
S.
Goh
,
J.
Bławzdziewicz
,
A. M.
Menzel
, and
H.
Löwen
, “
State diagram of a three-sphere microswimmer in a channel
,”
J. Phys.: Condens. Matter
30
,
254004
(
2018
).
107.
J. R.
Blake
, “
A note on the image system for a Stokeslet in a no-slip boundary
,”
Math. Proc. Cambridge Philos. Soc.
70
,
303
310
(
1971
).
108.
N.
Phan-Thien
and
D.
Tullock
, “
Completed double layer boundary element method in elasticity
,”
J. Mech. Phys. Solids
41
,
1067
1086
(
1993
).
109.
N.
Phan-Thien
and
D.
Tullock
, “
Completed double layer boundary element method in elasticity and stokes flow: Distributed computing through PVM
,”
Comput. Mech.
14
,
370
383
(
1994
).
110.
M.
Kohr
and
I. I.
Pop
,
Viscous Incompressible Flow for Low Reynolds Numbers
(
Wit Pr/Comp. Mech.
,
2004
), Vol. 16.
111.
H.
Zhao
and
E. S. G.
Shaqfeh
, “
Shear-induced platelet margination in a microchannel
,”
Phys. Rev. E
83
,
061924
(
2011
).
112.
H.
Zhao
,
E. S. G.
Shaqfeh
, and
V.
Narsimhan
, “
Shear-induced particle migration and margination in a cellular suspension
,”
Phys. Fluids
24
,
011902
(
2012
).
113.
C.
Pozrikidis
, “
Interfacial dynamics for Stokes flow
,”
J. Comput. Phys.
169
,
250
(
2001
).
114.
A.
Daddi Moussa Ider
,
Diffusion of Nanoparticles Nearby Elastic Cell Membranes: A Theoretical Study
(
University of Bayreuth
,
Germany
,
2017
).
115.
A.
Guckenberger
,
M. P.
Schraml
,
P. G.
Chen
,
M.
Leonetti
, and
S.
Gekle
, “
On the bending algorithms for soft objects in flows
,”
Comput. Phys. Commun.
207
,
1
23
(
2016
).
116.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
,
1309
1331
(
2009
).
117.
T.
Krüger
,
F.
Varnik
, and
D.
Raabe
, “
Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method
,”
Comput. Math. Appl.
61
,
3485
3505
(
2011
).
118.
S.
Gekle
, “
Strongly accelerated margination of active particles in blood flow
,”
Biophys. J.
110
,
514
520
(
2016
).
119.
C.
Bächer
,
L.
Schrack
, and
S.
Gekle
, “
Clustering of microscopic particles in constricted blood flow
,”
Phys. Rev. Fluids
2
,
013102
(
2017
).
120.
A.
Guckenberger
,
A.
Kihm
,
T.
John
,
C.
Wagner
, and
S.
Gekle
, “
Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel
,”
Soft Matter
14
,
2032
2043
(
2018
).
121.
A. R.
Conn
,
N. I. M.
Gould
, and
P. L.
Toint
,
Trust Region Methods
(
SIAM
,
Philadelphia, PA
,
2000
), Vol. 1.
You do not currently have access to this content.