Using gradient- and dispersion-corrected density functional theory in connection with ab initio molecular dynamics and efficient, parametrized Velocity-Velocity Autocorrelation Function (VVAF) methodology, we study the vibrational spectra (Vibrational Sum Frequency, VSF, and infrared, IR) of hydroxylated α-Al2O3(0001) surfaces with and without additional water. Specifically, by considering a naked hydroxylated surface and the same surface with a particularly stable, “ice-like” hexagonal water later allows us to identify and disentangle main spectroscopic bands of OH bonds, their orientation and dynamics, and the role of water adsorption. In particular, we assign spectroscopic signals around 3700 cm−1 as being dominated by perpendicularly oriented non-hydrogen bonded aluminol groups, with and without additional water. Furthermore, the thin water layer gives spectroscopic signals which are already comparable to previous theoretical and experimental findings for the solid/(bulk) liquid interface, showing that water molecules closest to the surface play a decisive role in the vibrational response of these systems. From a methodological point of view, the effects of temperature, anharmonicity, hydrogen-bonding, and structural dynamics are taken into account and analyzed, allowing us to compare the calculated IR and VSF spectra with the ones based on normal mode analysis and vibrational density of states. The VVAF approach employed in this work appears to be a computationally accurate yet feasible method to address the vibrational fingerprints and dynamical properties of water/metal oxide interfaces.

1.
O.
Bjørneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
,
Chem. Rev.
116
(
13
),
7698
7726
(
2016
).
2.
G. E.
Brown
,
V. E.
Henrich
,
W. H.
Casey
,
D. L.
Clark
,
C.
Eggleston
,
A.
Felmy
,
D. W.
Goodman
,
M.
Grätzel
,
G.
Maciel
,
M. I.
McCarthy
,
K. H.
Nealson
,
D. A.
Sverjensky
,
M. F.
Toney
, and
J. M.
Zachara
,
Chem. Rev.
99
(
1
),
77
174
(
1999
).
3.
H.-J.
Freund
,
H.
Kuhlenbeck
, and
V.
Staemmler
,
Rep. Prog. Phys.
59
(
3
),
283
(
1996
).
4.
M. A.
Henderson
,
Surf. Sci. Rep.
46
,
1
308
(
2002
).
5.
M.-P.
Gaigeot
,
M.
Sprik
, and
M.
Sulpizi
,
J. Phys.: Condens. Matter
24
(
12
),
124106
(
2012
).
6.
Y.
Wang
and
C.
Wöll
,
Chem. Soc. Rev.
46
(
7
),
1875
1932
(
2017
).
7.
R.
Mu
,
Z.-J.
Zhao
,
Z.
Dohnalek
, and
J.
Gong
,
Chem. Soc. Rev.
46
(
7
),
1785
1806
(
2017
).
8.
M. E.
McBriarty
,
G. F.
von Rudorff
,
J. E.
Stubbs
,
P. J.
Eng
,
J.
Blumberger
, and
K. M.
Rosso
,
J. Am. Chem. Soc.
139
(
7
),
2581
2584
(
2017
).
9.
Z.-J.
Zhao
,
Z.
Li
,
Y.
Cui
,
H.
Zhu
,
W. F.
Schneider
,
W. N.
Delgass
,
F.
Ribeiro
, and
J.
Greeley
,
J. Catal.
345
,
157
169
(
2017
).
10.
J.
Wirth
and
P.
Saalfrank
,
J. Phys. Chem. C
116
(
51
),
26829
26840
(
2012
).
11.
H.
Kirsch
,
J.
Wirth
,
Y.
Tong
,
M.
Wolf
,
P.
Saalfrank
, and
K. R.
Campen
,
J. Phys. Chem. C
118
(
25
),
13623
13630
(
2014
).
12.
Y.
Tong
,
J.
Wirth
,
H.
Kirsch
,
M.
Wolf
,
P.
Saalfrank
, and
K. R.
Campen
,
J. Chem. Phys.
142
(
12
),
054704
(
2015
).
13.
J.
Wirth
,
H.
Kirsch
,
S.
Wlosczyk
,
Y.
Tong
,
P.
Saalfrank
, and
K. R.
Campen
,
Phys. Chem. Chem. Phys.
18
,
14822
(
2016
).
14.
S.
Heiden
,
Y.
Yanhua
,
H.
Kirsch
,
J.
Wirth
,
P.
Saalfrank
, and
K. R.
Campen
,
J. Phys. Chem. C
122
(
12
),
6573
6584
(
2018
).
15.
J. L.
Skinner
,
P. A.
Pieniazek
, and
S. M.
Gruenbaum
,
Acc. Chem. Res.
45
(
1
),
93
100
(
2012
).
16.
F.
Perakis
,
L.
De Marco
,
A.
Shalit
,
F.
Tang
,
Z. R.
Kann
,
T. D.
Kühne
,
R.
Torre
,
M.
Bonn
, and
Y.
Nagata
,
Chem. Rev.
116
(
13
),
7590
7607
(
2016
).
17.
L.
Zhang
,
C.
Tian
,
G. A.
Waychunas
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
130
(
24
),
7686
7694
(
2008
).
18.
Y.
Nagata
and
S.
Mukamel
,
J. Am. Chem. Soc.
132
(
18
),
6434
6442
(
2010
).
19.
S.
Roy
and
D. K.
Hore
,
J. Phys. Chem. C
116
(
43
),
22867
22877
(
2012
).
20.
J. F. D.
Liljeblad
and
E.
Tyrode
,
J. Phys. Chem. C
116
(
43
),
22893
22903
(
2012
).
21.
S. A.
Hall
,
K. C.
Jena
,
P. A.
Covert
,
S.
Roy
,
T. G.
Trudeau
, and
D. K.
Hore
,
J. Phys. Chem. B
118
(
21
),
5617
5636
(
2014
).
22.
H.-F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
216
(
2015
).
23.
P. A.
Covert
and
D. K.
Hore
,
Annu. Rev. Phys. Chem.
67
(
1
),
233
257
(
2016
).
24.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
Chem. Rev.
117
(
16
),
10665
10693
(
2017
).
25.
A.
Tuladhar
,
S. M.
Piotek
, and
E.
Borguet
,
J. Phys. Chem. C
121
,
5168
5177
(
2017
).
26.
L.
Dalstein
,
E.
Potapova
, and
E.
Tyrode
,
Phys. Chem. Chem. Phys.
19
,
10343
10349
(
2017
).
27.
A.
Morita
and
J. T.
Hynes
,
J. Phys. Chem. B
106
(
3
),
673
685
(
2002
).
28.
A.
Perry
,
C.
Neipert
,
B.
Space
, and
P. B.
Moore
,
Chem. Rev.
106
(
4
),
1234
1258
(
2006
).
29.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.-P.
Gaigeot
,
J. Phys. Chem. Lett.
4
(
1
),
83
87
(
2013
).
30.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
,
J. Chem. Phys.
143
(
12
),
124702
(
2015
).
31.
S.
Luber
,
J. Phys. Chem. Lett.
7
,
5183
5187
(
2016
).
32.
M.-P.
Gaigeot
and
M.
Sulpizi
,
Mineral/Water Interaction
(
John Wiley and Sons, Ltd.
,
2016
).
33.
P.
Huang
,
T. A.
Pham
,
G.
Galli
, and
E.
Schwegler
,
J. Phys. Chem. C
118
(
17
),
8944
8951
(
2014
).
34.
M.
DelloStritto
and
J.
Sofo
,
J. Phys. Chem. A
121
(
16
),
3045
3055
(
2017
).
35.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
2000
).
36.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
(
2
),
371
390
(
2000
).
37.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
111
(
2
),
721
737
(
2007
).
38.
T.
Ishiyama
,
T.
Imamura
, and
A.
Morita
,
Chem. Rev.
114
(
17
),
8447
8470
(
2014
).
39.
T.
Ishiyama
and
A.
Morita
,
Annu. Rev. Phys. Chem.
68
(
1
),
355
377
(
2017
).
40.
R. W.
Nunes
and
X.
Gonze
,
Phys. Rev. B
63
,
155107
(
2001
).
41.
A. A.
Mostofi
,
J. R.
Yates
,
G.
Pizzi
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
,
Comput. Phys. Commun.
185
,
2309
2310
(
2014
).
42.
S.
Hosseinpour
,
F.
Tang
,
F.
Wang
,
R. A.
Livingstone
,
S. J.
Schlegel
,
T.
Ohto
,
M.
Bonn
,
Y.
Nagata
, and
E. H. G.
Backus
,
J. Phys. Chem. Lett.
8
,
2195
2199
(
2017
).
43.
S. A.
Corcelli
and
J. L.
Skinner
,
J. Phys. Chem. A
109
(
28
),
6154
6165
(
2005
).
44.
B. M.
Auer
and
J. L.
Skinner
,
J. Chem. Phys.
128
(
22
),
224511
(
2008
).
45.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
A1138
(
1965
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
47.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
48.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
49.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
(
17
),
13115
13118
(
1993
).
50.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
51.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
52.
M. J.
Gillan
,
D.
Alfé
, and
A.
Michaelides
,
J. Chem. Phys.
144
(
13
),
130901
(
2016
).
53.
S.
Nosé
,
Mol. Phys.
52
(
2
),
255
268
(
1984
).
54.
X.-G.
Wang
,
A.
Chaka
, and
M.
Scheffler
,
Phys. Rev. Lett.
84
(
16
),
3650
3653
(
2000
).
55.
Z.
Łodziana
,
J. K.
Nørskov
, and
P.
Stoltze
,
J. Chem. Phys.
118
(
24
),
11179
11188
(
2003
).
56.
J. A.
Kelber
,
Surf. Sci. Rep.
62
(
7
),
271
303
(
2007
).
57.
V. A.
Ranea
,
W. F.
Schneider
, and
I.
Carmichael
,
Surf. Sci.
602
(
1
),
268
275
(
2008
).
58.
R.
Polly
,
B.
Schimmelpfennig
,
M.
Flörsheimer
,
K.
Kruse
,
A.
AbdElMonem
,
R.
Klenze
,
G.
Rauhut
, and
T.
Fanghänel
,
J. Chem. Phys.
130
(
6
),
064702
(
2009
).
59.
T.
Kurita
,
K.
Uchida
, and
A.
Oshiyama
,
Phys. Rev. B
82
(
15
),
155319
(
2010
).
60.
S.
Wippermann
,
W. G.
Schmidt
,
P.
Thissen
, and
G.
Grundmeier
,
Phys. Status Solidi C
7
(
2
),
137
140
(
2010
).
61.
B. J.
Berne
and
G. D.
Harp
,
Adv. Chem. Phys.
27
,
63
227
(
2007
).
62.
R.
Khatib
,
E. H. G.
Backus
,
M.
Bonn
,
M.-J.
Perez-Haro
,
M.-P.
Gaigeot
, and
M.
Sulpizi
,
Sci. Rep.
6
,
24287
(
2016
).
63.
R.
Khatib
and
M.
Sulpizi
,
J. Phys. Chem. Lett.
8
(
6
),
1310
1314
(
2017
).
You do not currently have access to this content.