The intersystem crossing (ISC) mechanism of a cyclic (alkyl)(amino) carbene gold (I) complex (CMA1) is studied using quantum dynamics. A model spin-vibronic Hamiltonian is developed, which includes 10 excited states and two important nuclear degrees of freedom. The quantum dynamics reveals that ISC from S1 → T1 occurs on the tens of picosecond time scale, consistent with recent experiments. It is driven by motion along the torsional degree of freedom of the carbazole (Cz) ligand, which causes orthogonality between the donor and acceptor groups closing the gap between the initial (S1) and final (T1) states. The role of higher triplet states through spin-vibronic interactions is also discussed. Although previous calculations, evaluated in the Condon approximation, yield large ISC rates, our present dynamical treatment, taking into account the large amplitude torsional motion, increases the calculated rate by an order of magnitude improving the agreement with experiments. The model spin-vibronic Hamiltonian developed can also be used to understand the properties of related linear metal carbene compounds, facilitating molecular design.

1.
C. M.
Marian
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
187
(
2012
).
2.
M.
Chergui
,
Dalton Trans.
41
,
13022
(
2012
).
3.
T. J.
Penfold
,
E.
Gindensperger
,
C.
Daniel
, and
C. M.
Marian
, “
Spin-vibronic mechanism for intersystem crossing
,”
Chem. Rev.
(published online).
4.
A.
Cannizzo
,
A. M.
Blanco-Rodriguez
,
A.
El Nahhas
,
J.
Šebera
,
S.
Záliš
,
A.
Vlček
, and
M.
Chergui
,
J. Am. Chem. Soc.
130
,
8967
(
2008
).
5.
T.
Hofbeck
,
Y. C.
Lam
,
M.
Kalbáč
,
S.
Záliš
,
A.
Vlček
, and
H.
Yersin
,
Inorg. Chem.
55
,
2441
(
2016
).
6.
H.
Uoyama
,
K.
Goushi
,
K.
Shizu
,
H.
Nomura
, and
C.
Adachi
,
Nature
492
,
234
(
2012
).
7.
F. B.
Dias
,
T. J.
Penfold
, and
A. P.
Monkman
,
Methods Appl. Fluoresc.
5
,
012001
(
2017
).
8.
T. J.
Penfold
,
F. B.
Dias
, and
A. P.
Monkman
,
Chem. Commun.
54
,
3926
(
2018
).
9.
J. R.
Kirchhoff
,
R. E.
Gamache
, Jr.
,
M. W.
Blaskie
,
A. A.
Del Paggio
,
R. K.
Lengel
, and
D. R.
McMillin
,
Inorg. Chem.
22
,
2380
(
1983
).
10.
J. C.
Deaton
,
S. C.
Switalski
,
D. Y.
Kondakov
,
R. H.
Young
,
T. D.
Pawlik
,
D. J.
Giesen
,
S. B.
Harkins
,
A. J. M.
Miller
,
S. F.
Mickenberg
, and
J. C.
Peters
,
J. Am. Chem. Soc.
132
,
9499
(
2010
).
11.
R.
Czerwieniec
,
M. J.
Leitl
,
H. H. H.
Homeier
, and
H.
Yersin
,
Coord. Chem. Rev.
325
,
2
(
2016
).
12.
M. Z.
Shafikov
,
A. F.
Suleymanova
,
R.
Czerwieniec
, and
H.
Yersin
,
Chem. Mater.
29
,
1708
(
2017
).
13.
W.-P.
To
,
D.
Zhou
,
G.
So Ming Tong
,
G.
Cheng
,
C.
Yang
, and
C.-M.
Che
,
Angew. Chem., Int. Ed.
129
,
14224
(
2017
).
14.
J.
Fernandez-Cestau
,
B.
Bertrand
,
M.
Blaya
,
G. A.
Jones
,
T. J.
Penfold
, and
M.
Bochmann
,
Chem. Commun.
51
,
16629
(
2015
).
15.
J.
Gibson
,
A. P.
Monkman
, and
T. J.
Penfold
,
ChemPhysChem
17
,
2956
(
2016
).
16.
M. K.
Etherington
,
J.
Gibson
,
H. F.
Higginbotham
,
T. J.
Penfold
, and
A. P.
Monkman
,
Nat. Commun.
7
,
13680
(
2016
).
17.
M. K.
Etherington
,
F.
Franchello
,
J.
Gibson
,
T.
Northey
,
J.
Santos
,
J. S.
Ward
,
H. F.
Higginbotham
,
P.
Data
,
A.
Kurowska
,
P.
Lays Dos Santos
 et al,
Nat. Commun.
8
,
14987
(
2017
).
18.
C. M.
Marian
,
J. Phys. Chem. C
120
,
3715
(
2016
).
19.
I.
Lyskov
and
C. M.
Marian
,
J. Phys. Chem. C
121
,
21145
(
2017
).
20.
D.
Di
,
A. S.
Romanov
,
Le
Yang
,
J. M.
Richter
,
J. P. H.
Rivett
,
S.
Jones
,
T. H.
Thomas
,
M. A.
Jalebi
,
R. H.
Friend
,
M.
Linnolahti
 et al, “
High-performance light-emitting diodes based on carbene-metal-amides
,”
Science
356
,
159
(
2017
).
21.
N. J.
Turro
,
Modern Molecular Photochemistry
(
University Science Books
,
1991
).
22.
J.
Fóller
and
C. M.
Marian
,
J. Phys. Chem. Lett.
8
,
5643
(
2017
).
23.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
24.
I.
Lyskov
,
M.
Kleinschmidt
, and
C. M.
Marian
,
J. Chem. Phys.
144
,
034104
(
2016
).
25.
26.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
27.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
28.
D.
Andrae
,
U.
Häußermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuß
,
Theor. Chem. Acc.
77
,
123
(
1990
).
29.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
30.
A.
Klamt
and
G. J.
Schüürmann
,
J. Chem. Soc., Perkin Trans. 2
5
,
799
805
(
1993
).
31.
A.
Klamt
,
J. Phys. Chem.
100
,
3349
(
1996
).
32.
G.
Te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
33.
C.
Fonseca Guerra
,
J. G.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
34.
E.
Jan Baerends
 et al,
ADF2017, SCM, Theoretical Chemistry
(
Vrije Universiteit
,
Amsterdam, The Netherlands
,
2017
), https://www.scm.com.
35.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
36.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
37.
E.
van Lenthe
,
A.
Ehlers
, and
E.-J.
Baerends
,
J. Chem. Phys.
110
,
8943
(
1999
).
38.
E.
van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
(
2003
).
39.
D. P.
Chong
,
E.
van Lenthe
,
S.
van Gisbergen
, and
E. J.
Baerends
,
J. Comput. Chem.
25
,
1030
(
2004
).
41.
M.
Pápai
,
T. J.
Penfold
, and
K. B.
Moller
,
J. Phys. Chem. C
120
,
17234
(
2016
).
42.
G.
Capano
,
T. J.
Penfold
,
U.
Röthlisberger
, and
I.
Tavernelli
,
Chimia
68
,
227
(
2014
).
43.
J.
Eng
,
C.
Gourlaouen
,
E.
Gindensperger
, and
C.
Daniel
,
Acc. Chem. Res.
48
,
809
(
2015
).
44.
J. E.
Subotnik
,
S.
Yeganeh
,
R. J.
Cave
, and
M. A.
Ratner
,
J. Chem. Phys.
129
(
24
),
244101
(
2008
).
45.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
(
1
),
1
105
(
2000
).
You do not currently have access to this content.