In this paper, we explore the strengths and weaknesses of a cavity-based method to calculate the excess chemical potential of a large molecular solute in a dense liquid solvent. Use of the cavity alleviates some technical problems associated with the appearance of (integrable) divergences in the integrand during alchemical particle growth. The excess chemical potential calculated using the cavity-based method should be independent of the cavity attributes. However, the performance of the method (equilibration time and the robustness) does depend on the cavity attributes. To illustrate the importance of a suitable choice of the cavity attributes, we calculate the partition coefficient of pyrene in toluene and heptane using a coarse-grained model. We find that a poor choice for the functional form of the cavity may lead to hysteresis between growth and shrinkage of the cavity. Somewhat unexpectedly, we find that, by allowing the cavity to move as a pseudo-particle within the simulation box, the decay time of fluctuations in the integrand of the thermodynamic integration can be reduced by an order of magnitude, thereby increasing the statistical accuracy of the calculation.

1.
M.
Lísal
,
W. R.
Smith
, and
J.
Kolafa
, “
Molecular simulations of aqueous electrolyte solubility. I. The expanded-ensemble osmotic molecular dynamics method for the solution phase
,”
J. Phys. Chem. B
109
,
12956
12965
(
2005
).
2.
J. C.
Dearden
, “
In silico prediction of aqueous solubility
,”
Expert Opin. Drug Discovery
1
,
31
52
(
2006
).
3.
D. S.
Palmer
,
A.
Llinàs
,
I.
Morao
,
G. M.
Day
,
J. M.
Goodman
,
R. C.
Glen
, and
J. B.
Mitchell
, “
Predicting intrinsic aqueous solubility by a thermodynamic cycle
,”
Mol. Pharmaceutics
5
,
266
279
(
2008
).
4.
F.
Moucka
,
M.
Lísal
,
J.
Skvor
,
J.
Jirsák
,
I.
Nezbeda
, and
W. R.
Smith
, “
Molecular simulation of aqueous electrolyte solubility. II. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to Nacl
,”
J. Phys. Chem. B
115
,
7849
7861
(
2011
).
5.
J.
Aragones
,
E.
Sanz
, and
C.
Vega
, “
Solubility of NaCl in water by molecular simulation revisited
,”
J. Chem. Phys.
136
,
244508
(
2012
).
6.
H. M.
Manzanilla-Granados
,
H.
Saint-Martín
,
R.
Fuentes-Azcatl
, and
J.
Alejandre
, “
Direct coexistence methods to determine the solubility of salts in water from numerical simulations. Test case Nacl
,”
J. Phys. Chem. B
119
,
8389
8396
(
2015
).
7.
Z.
Mester
and
A. Z.
Panagiotopoulos
, “
Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations
,”
J. Chem. Phys.
143
,
044505
(
2015
).
8.
I.
Nezbeda
,
F.
Moučka
, and
W. R.
Smith
, “
Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility
,”
Mol. Phys.
114
,
1665
1690
(
2016
).
9.
J.
Espinosa
,
J.
Young
,
H.
Jiang
,
D.
Gupta
,
C.
Vega
,
E.
Sanz
,
P.
Debenedetti
, and
A.
Panagiotopoulos
, “
On the calculation of solubilities via direct coexistence simulations: Investigation of Nacl aqueous solutions and Lennard-Jones binary mixtures
,”
J. Chem. Phys.
145
,
154111
(
2016
).
10.
G. L.
Amidon
,
H.
Lennernäs
,
V. P.
Shah
, and
J. R.
Crison
, “
A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability
,”
Pharm. Res.
12
,
413
420
(
1995
).
11.
M. H.
Abraham
and
J.
Le
, “
The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship
,”
J. Pharm. Sci.
88
,
868
880
(
1999
).
12.
W. L.
Jorgensen
and
E. M.
Duffy
, “
Prediction of drug solubility from Monte Carlo simulations
,”
Bioorg. Med. Chem. Lett.
10
,
1155
1158
(
2000
).
13.
W. L.
Jorgensen
and
E. M.
Duffy
, “
Prediction of drug solubility from structure
,”
Adv. Drug Delivery Rev.
54
,
355
366
(
2002
).
14.
M.
Esmaili
,
S. M.
Ghaffari
,
Z.
Moosavi-Movahedi
,
M. S.
Atri
,
A.
Sharifizadeh
,
M.
Farhadi
,
R.
Yousefi
,
J.-M.
Chobert
,
T.
Haertlé
, and
A. A.
Moosavi-Movahedi
, “
Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application
,”
LWT–Food Sci. Technol.
44
,
2166
2172
(
2011
).
15.
J.
Gajdoš
,
K.
Galić
,
Ž.
Kurtanjek
, and
N.
Ciković
, “
Gas permeability and dsc characteristics of polymers used in food packaging
,”
Polym. Test.
20
,
49
57
(
2000
).
16.
O. C.
Mullins
,
A. E.
Pomerantz
,
J. Y.
Zuo
, and
C.
Dong
, “
Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
325
345
(
2014
).
17.
Q.
Wu
,
A. E.
Pomerantz
,
O. C.
Mullins
, and
R. N.
Zare
, “
Laser-based mass spectrometric determination of aggregation numbers for petroleum-and coal-derived asphaltenes
,”
Energy Fuels
28
,
475
482
(
2013
).
18.
A.
Hirschberg
,
L.
DeJong
,
B.
Schipper
,
J.
Meijer
 et al, “
Influence of temperature and pressure on asphaltene flocculation
,”
Soc. Pet. Eng. J.
24
,
283
293
(
1984
).
19.
E.
Rogel
, “
Studies on asphaltene aggregation via computational chemistry
,”
Colloids Surf., A
104
,
85
93
(
1995
).
20.
O. C.
Mullins
, “
The asphaltenes
,”
Annu. Rev. Anal. Chem.
4
,
393
418
(
2011
).
21.
T.
Headen
,
E.
Boek
,
G.
Jackson
,
T.
Totton
, and
E.
Müller
, “
Simulation of asphaltene aggregation through molecular dynamics: Insights and limitations
,”
Energy Fuels
31
,
1108
1125
(
2017
).
22.
S.
Senkan
and
M.
Castaldi
, “
Combustion in ullmann’s encyclopedia of industrial chemistry
,” in
Polycyclic Aromatic Hydrocarbons in Urine from Two Psoriatic Patients
(
Acta Dermato Venereologica, Wiley-VCH
,
Weinheim
,
2003
), Vol. 73, pp.
188
190
.
23.
A.
Benavides
,
J.
Aragones
, and
C.
Vega
, “
Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
,”
J. Chem. Phys.
144
,
124504
(
2016
).
24.
M.
Ferrario
,
G.
Ciccotti
,
E.
Spohr
,
T.
Cartailler
, and
P.
Turq
, “
Solubility of KF in water by molecular dynamics using the Kirkwood integration method
,”
J. Chem. Phys.
117
,
4947
4953
(
2002
).
25.
L.
Li
,
T.
Totton
, and
D.
Frenkel
, “
Computational methodology for solubility prediction: Application to the sparingly soluble solutes
,”
J. Chem. Phys.
146
,
214110
(
2017
).
26.
F.
Moučka
,
J.
Kolafa
,
M.
Lísal
, and
W. R.
Smith
, “
Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl2, antarcticite, and sinjarite
,”
J. Chem. Phys.
148
,
222832
(
2018
).
27.
A.
Ghoufi
and
G.
Maurin
, “
Hybrid Monte Carlo simulations combined with a phase mixture model to predict the structural transitions of a porous metal-organic framework material upon adsorption of guest molecules
,”
J. Phys. Chem. C
114
,
6496
6502
(
2010
).
28.
F.-X.
Coudert
, “
The osmotic framework adsorbed solution theory: Predicting mixture coadsorption in flexible nanoporous materials
,”
Phys. Chem. Chem. Phys.
12
,
10904
10913
(
2010
).
29.
L. J.
Dunne
and
G.
Manos
, “
Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble
,”
Philos. Trans. R. Soc., A
376
,
20170151
(
2017
).
30.
H. K.
Hansen
,
C.
Riverol
, and
W. E.
Acree
, “
Solubilities of anthracene, fluoranthene and pyrene in organic solvents: Comparison of calculated values using UNIFAC and modified UNIFAC (Dortmund) models with experimental data and values using the mobile order theory
,”
Can. J. Chem. Eng.
78
,
1168
1174
(
2000
).
31.
A.
Jouyban
,
A.
Shayanfar
, and
W. E.
Acree
, “
Solubility prediction of polycyclic aromatic hydrocarbons in non-aqueous solvent mixtures
,”
Fluid Phase Equilib.
293
,
47
58
(
2010
).
32.
A.
Shayanfar
,
S. H.
Eghrary
,
F.
Sardari
,
W. E.
Acree
, Jr.
, and
A.
Jouyban
, “
Solubility of anthracene and phenanthrene in ethanol + 2,2,4-trimethylpentane mixtures at different temperatures
,”
J. Chem. Eng. Data
56
,
2290
2294
(
2011
).
33.
A.
Leo
,
C.
Hansch
, and
D.
Elkins
, “
Partition coefficients and their uses
,”
Chem. Rev.
71
,
525
616
(
1971
).
34.
E.
Baka
,
J. E.
Comer
, and
K.
Takács-Novák
, “
Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound
,”
J. Pharm. Biomed. Anal.
46
,
335
341
(
2008
).
35.
J.
Alsenz
and
M.
Kansy
, “
High throughput solubility measurement in drug discovery and development
,”
Adv. Drug Delivery Rev.
59
,
546
567
(
2007
).
36.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
 et al, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
37.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides
,”
J. Phys. Chem. B
105
,
6474
6487
(
2001
).
38.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
39.
T.
Steinbrecher
,
D. L.
Mobley
, and
D. A.
Case
, “
Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations
,”
J. Chem. Phys.
127
,
214108
(
2007
).
40.
T.
Simonson
, “
Free energy of particle insertion: An exact analysis of the origin singularity for simple liquids
,”
Mol. Phys.
80
,
441
447
(
1993
).
41.
T. C.
Beutler
,
A. E.
Mark
,
R. C.
van Schaik
,
P. R.
Gerber
, and
W. F.
van Gunsteren
, “
Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations
,”
Chem. Phys. Lett.
222
,
529
539
(
1994
).
42.
M.
Zacharias
,
T.
Straatsma
, and
J.
McCammon
, “
Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration
,”
J. Chem. Phys.
100
,
9025
9031
(
1994
).
43.
C.
Herdes
,
T. S.
Totton
, and
E. A.
Muller
, “
Coarse grained force field for the molecular simulation of natural gases and condensates
,”
Fluid Phase Equilib.
406
,
91
100
(
2015
).
44.
E. A.
Müller
and
A.
Mejía
, “
Extension of the SAFT-VR Mie EoS to model homonuclear rings and its parametrization based on the principle of corresponding states
,”
Langmuir
33
,
11518
(
2017
).
45.
C. L.
Kong
, “
Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential
,”
J. Chem. Phys.
59
,
2464
2467
(
1973
).
46.
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2005
).
47.
J. P.
Postma
,
H. J.
Berendsen
, and
J. R.
Haak
, “
Thermodynamics of cavity formation in water. A molecular dynamics study
,” in
Faraday Symposia of the Chemical Society
(
Royal Society of Chemistry
,
1982
), Vol. 17, pp.
55
67
.
48.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
(
1971
).
49.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2001
), Vol. 1.
50.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
51.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981
, edited by
B.
Pullman
(
Springer Netherlands
,
Dordrecht
,
1981
), pp.
331
342
.
52.
E. A.
Müller
and
K. E.
Gubbins
, “
Molecular-based equations of state for associating fluids: A review of saft and related approaches
,”
Ind. Eng. Chem. Res.
40
,
2193
2211
(
2001
).
53.
O.
Lobanova
,
C.
Avendano
,
T.
Lafitte
,
E. A.
Muller
, and
G.
Jackson
, “
SAFT-γ force field for the simulation of molecular fluids: 4 A single-site coarse-grained model of water applicable over a wide temperature range
,”
Mol. Phys.
113
,
1228
1249
(
2015
).
54.
I.
Bitsanis
,
S. A.
Somers
,
H. T.
Davis
, and
M.
Tirrell
, “
Microscopic dynamics of flow in molecularly narrow pores
,”
J. Chem. Phys.
93
,
3427
3431
(
1990
).
55.
A. L.
Demirel
and
S.
Granick
, “
Glasslike transition of a confined simple fluid
,”
Phys. Rev. Lett.
77
,
2261
(
1996
).
56.
L.
Bocquet
and
J.-L.
Barrat
, “
Hydrodynamic properties of confined fluids
,”
J. Phys.: Condens. Matter
8
,
9297
(
1996
).
57.
M.
Frank
and
D.
Drikakis
, “
Solid-like heat transfer in confined liquids
,”
Microfluid. Nanofluid.
21
,
148
(
2017
).
58.
A.
Ben-Naim
, “
Standard thermodynamics of transfer. Uses and misuses
,”
J. Phys. Chem.
82
,
792
803
(
1978
).
59.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
313
(
1935
).
60.
K.
Shing
and
S.
Chung
, “
Computer simulation methods for the calculation of solubility in supercritical extraction systems
,”
J. Phys. Chem.
91
,
1674
1681
(
1987
).
61.
G.
Jacucci
and
A.
Rahman
, “
Comparing the efficiency of metropolis Monte Carlo and molecular-dynamics methods for configuration space sampling
,”
Il Nuovo Cimento D
4
,
341
356
(
1984
).
62.
R.
Zwanzig
and
N. K.
Ailawadi
, “
Statistical error due to finite time averaging in computer experiments
,”
Phys. Rev.
182
,
280
(
1969
).

Supplementary Material

You do not currently have access to this content.