We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden–Fletcher–Goldfarb–Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.

1.
M. R.
Hestenes
and
E.
Stiefel
,
J. Res. Natl. Bur. Stand.
49
,
409
(
1952
).
2.
C. G.
Broyden
,
J. Inst. Math. Appl.
6
,
76
(
1970
).
3.
5.
D. F.
Shanno
,
Math. Comput.
24
,
647
(
1970
).
6.
R.
Fletcher
,
Practical Methods of Optimization
(
Wiley
,
New York
,
1980
).
7.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
(
1989
).
9.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
10.
J. P.
Alborzpour
,
D. P.
Tew
, and
S.
Habershon
,
J. Chem. Phys.
145
,
174112
(
2016
).
11.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
12.
R.
Ramakrishnan
and
O. A.
von Lilienfeld
, “
Machine learning, quantum chemistry, and chemical space
,” in
Reviews in Computational Chemistry
(
JWS
,
2017
), pp.
225
256
.
13.
G.
Mills
and
H.
Jónsson
,
Phys. Rev. Lett.
72
,
1124
(
1994
).
14.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
15.
O.-P.
Koistinen
,
F. B.
Dagbjartsdóttir
,
V.
Ásgeirsson
,
A.
Vehtari
, and
H.
Jónsson
,
J. Chem. Phys.
147
,
152720
(
2017
).
16.
M. J.
Mills
and
P. L.
Popelier
,
Comput. Theor. Chem.
975
,
42
(
2011
).
17.
C. M.
Handley
,
G. I.
Hawe
,
D. B.
Kell
, and
P. L. A.
Popelier
,
Phys. Chem. Chem. Phys.
11
,
6365
(
2009
).
18.
T. L.
Fletcher
,
S. M.
Kandathil
, and
P. L. A.
Popelier
,
Theor. Chem. Acc.
133
,
1499
(
2014
).
19.
R.
Ramakrishnan
and
O. A.
von Lilienfeld
,
CHIMIA Ind. J. Chem.
69
,
182
(
2015
).
20.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
6
,
2326
(
2015
).
21.
P.
Dral
,
A.
Owens
,
S.
Yurchenko
, and
W.
Thiel
,
J. Chem. Phys.
146
,
244108
(
2017
).
22.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
,
Phys. Rev. Lett.
114
,
096405
(
2015
).
23.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
,
J. Phys. Chem. A
113
,
11856
(
2009
).
24.
P.
Sherwood
,
A. H.
de Vries
,
M. F.
Guest
,
G.
Schreckenbach
,
C. A.
Catlow
,
S. A.
French
,
A. A.
Sokol
,
S. T.
Bromley
,
W.
Thiel
,
A. J.
Turner
,
S.
Billeter
,
F.
Terstegen
,
S.
Thiel
,
J.
Kendrick
,
S. C.
Rogers
,
J.
Casci
,
M.
Watson
,
F.
King
,
E.
Karlsen
,
M.
Sjøvoll
,
A.
Fahmi
,
A.
Schäfer
, and
C.
Lennartz
,
J. Mol. Struct.: THEOCHEM.
632
,
1
(
2003
).
25.
S.
Metz
,
J.
Kästner
,
A. A.
Sokol
,
T. W.
Keal
, and
P.
Sherwood
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
101
(
2014
).
26.
B.
Matérn
,
Spatial Variation
(
SSBM
,
2013
), Vol. 36.
27.
C. E.
Rasmussen
and
C. K.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge
,
2006
), Vol. 1.
28.
J.
Zheng
and
M. J.
Frisch
,
J. Chem. Theory Comput.
13
,
6424
(
2017
).
29.
D.
Shepard
, in
Proceedings of the 1968 23rd ACM National Conference, ACM’68
(
ACM
,
New York, NY, USA
,
1968
), pp.
517
524
.
31.
M. J.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
32.
S.
Sen
,
W.
Frey
,
J.
Meisner
,
J.
Kästner
, and
M. R.
Buchmeiser
,
J. Organomet. Chem.
799-800
,
223
(
2015
).
33.
34.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
35.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).

Supplementary Material

You do not currently have access to this content.