Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.

1.
C. J.
Dorman
, “
Nucleoid-associated proteins and bacterial physiology
,”
Adv. Appl. Microbiol.
67
,
47
64
(
2009
).
2.
S. C.
Dillon
and
C. J.
Dorman
, “
Bacterial nucleoid-associated proteins, nucleoid structure and gene expression
,”
Nat. Rev. Micro.
8
,
185
195
(
2010
).
3.
D. F.
Browning
,
D. C.
Grainger
, and
S. J.
Busby
, “
Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression
,”
Curr. Opin. Microbiol.
13
,
773
780
(
2010
).
4.
M. S.
Luijsterburg
,
M. C.
Noom
,
G. J.
Wuite
, and
R. T.
Dame
, “
The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective
,”
J. Struct. Biol.
156
,
262
272
(
2006
).
5.
K. K.
Swinger
and
P. A.
Rice
, “
IHF and HU: Flexible architects of bent DNA
,”
Curr. Opin. Struct. Biol.
14
,
28
35
(
2004
).
6.
R. T.
Dame
, “
The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin
,”
Mol. Microbiol.
56
,
858
870
(
2005
).
7.
D.
Song
and
J. J.
Loparo
, “
Building bridges within the bacterial chromosome
,”
Trends Genet.
31
,
164
173
(
2015
).
8.
J.
van Noort
,
S.
Verbrugge
,
N.
Goosen
,
C.
Dekker
, and
R. T.
Dame
, “
Dual architectural roles of HU: Formation of flexible hinges and rigid filaments
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
6969
6974
(
2004
).
9.
D.
Perkins-Balding
,
D.
Dias
, and
A.
Glasgow
, “
Location, degree, and direction of DNA bending associated with the Hin recombinational enhancer sequence and Fis-enhancer complex
,”
J. Bacteriol.
179
,
4747
4753
(
1997
).
10.
D.
Skoko
,
D.
Yoo
,
H.
Bai
,
B.
Schnurr
,
J.
Yan
,
S. M.
McLeod
,
J. F.
Marko
, and
R. C.
Johnson
, “
Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis
,”
J. Mol. Biol.
364
,
777
798
(
2006
).
11.
Y.
Hodges-Garcia
,
P. J.
Hagerman
, and
D. E.
Pettijohn
, “
DNA ring closure mediated by protein HU
,”
J. Biol. Chem.
264
,
14621
14623
(
1989
).
12.
M.
Berger
,
A.
Farcas
,
M.
Geertz
,
P.
Zhelyazkova
,
K.
Brix
,
A.
Travers
, and
G.
Muskhelishvili
, “
Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU
,”
EMBO Rep.
11
,
59
64
(
2010
).
13.
R.
Hengge-Aronis
, “
Interplay of global regulators and cell physiology in the general stress response of Escherichia coli
,”
Curr. Opin. Microbiol.
2
,
148
152
(
1999
).
14.
T.
Atlung
and
H.
Ingmer
, “
H-NS: A modulator of environmentally regulated gene expression
,”
Mol. Microbiol.
24
,
7
17
(
1997
).
15.
T. A.
Owen-Hughes
,
G. D.
Pavitt
,
D. S.
Santos
,
J. M.
Sidebotham
,
C. S.
Hulton
,
J. C.
Hinton
, and
C. F.
Higgins
, “
The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression
,”
Cell
71
,
255
265
(
1992
).
16.
I.
Zwir
,
W.-S.
Yeo
,
D.
Shin
,
T.
Latifi
,
H.
Huang
, and
E. A.
Groisman
, “
Bacterial nucleoid-associated protein uncouples transcription levels from transcription timing
,”
mBio
5
,
e01485-14
(
2014
).
17.
L. M.
Schechter
,
S.
Jain
,
S.
Akbar
, and
C. A.
Lee
, “
The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica Serovar Typhimurium
,”
Infect. Immun.
71
,
5432
5435
(
2003
).
18.
H.
Yin
,
M. D.
Wang
,
K.
Svoboda
,
R.
Landick
,
S. M.
Block
, and
J.
Gelles
, “
Transcription against an applied force
,”
Science
270
,
1653
1657
(
1995
).
19.
B.
Maier
,
D.
Bensimon
, and
V.
Croquette
, “
Replication by a single DNA polymerase of a stretched single-stranded DNA
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
12002
12007
(
2000
).
20.
G. J. L.
Wuite
,
S. B.
Smith
,
M.
Young
,
D.
Keller
, and
C.
Bustamante
, “
Single-molecule studies of the effect of template tension on T7 DNA polymerase activity
,”
Nature
404
,
103
106
(
2000
).
21.
R. D.
Giuntoli
,
N. B.
Linzer
,
E. J.
Banigan
,
C. E.
Sing
,
M. O.
de la Cruz
,
J. S.
Graham
,
R. C.
Johnson
, and
J. F.
Marko
, “
DNA-segment-facilitated dissociation of Fis and NHP6A from DNA detected via single-molecule mechanical response
,”
J. Mol. Biol.
427
,
3123
3136
(
2015
).
22.
J. S.
Graham
,
R. C.
Johnson
, and
J. F.
Marko
, “
Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA
,”
Nucleic Acids Res.
39
,
2249
2259
(
2011
).
23.
B.
Xiao
,
H.
Zhang
,
R. C.
Johnson
, and
J. F.
Marko
, “
Force-driven unbinding of proteins HU and Fis from DNA quantified using a thermodynamic Maxwell relation
,”
Nucleic Acids Res.
39
,
5568
5577
(
2011
).
24.
B.
Xiao
,
R. C.
Johnson
, and
J. F.
Marko
, “
Modulation of HUDNA interactions by salt concentration and applied force
,”
Nucleic Acids Res.
38
,
6176
(
2010
).
25.
D.
Skoko
,
B.
Wong
,
R.
Johnson
, and
J.
Marko
, “
Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA-protein complexes
,”
Biochemistry
43
,
13867
13874
(
2004
).
26.
B. M. J.
Ali
,
R.
Amit
,
I.
Braslavsky
,
A. B.
Oppenheim
,
O.
Gileadi
, and
J.
Stavans
, “
Compaction of single DNA molecules induced by binding of integration host factor (IHF)
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
10658
10663
(
2001
).
27.
J.
Lin
,
H.
Chen
,
P.
Droge
, and
J.
Yan
, “
Physical organization of DNA by multiple non-specific DNA-binding modes of integration host factor (IHF)
,”
PLoS One
7
,
e49885
(
2012
).
28.
M.-Y.
Tsai
,
B.
Zhang
,
W.
Zheng
, and
P. G.
Wolynes
, “
Molecular mechanism of facilitated dissociation of Fis protein from DNA
,”
J. Am. Chem. Soc.
138
,
13497
13500
(
2016
).
29.
K.
Drlica
and
J.
Rouviere-Yaniv
, “
Histonelike proteins of bacteria
,”
Microbiol. Rev.
51
,
301
319
(
1987
).
30.
T. A.
Knotts
,
N.
Rathore
,
D. C.
Schwartz
, and
J. J.
de Pablo
, “
A coarse grain model for DNA
,”
J. Chem. Phys.
126
,
084901
(
2007
).
31.
C.
Tan
,
T.
Terakawa
, and
S.
Takada
, “
Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics
,”
J. Am. Chem. Soc.
138
,
8512
8522
(
2016
).
32.
N.
Khazanov
and
Y.
Levy
, “
Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains
,”
J. Mol. Biol.
408
,
335
355
(
2011
).
33.
O.
Givaty
and
Y.
Levy
, “
Protein sliding along DNA: Dynamics and structural characterization
,”
J. Mol. Biol.
385
,
1087
1097
(
2009
).
34.
T.
Terakawa
and
S.
Takada
, “
p53 dynamics upon response element recognition explored by molecular simulations
,”
Sci. Rep.
5
,
17107
(
2015
).
35.
L.
Zandarashvili
,
A.
Esadze
,
D.
Vuzman
,
C. A.
Kemme
,
Y.
Levy
, and
J.
Iwahara
, “
Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E5142
E5149
(
2015
).
36.
S.
Sharma
,
F.
Ding
, and
N. V.
Dokholyan
, “
Multiscale modeling of nucleosome dynamics
,”
Biophys. J.
92
,
1457
1470
(
2007
).
37.
Y.
Fan
,
N.
Korolev
,
A. P.
Lyubartsev
, and
L.
Nordenskild
, “
An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions
,”
PLoS One
8
,
e54228
(
2013
).
38.
G. S.
Freeman
,
J. P.
Lequieu
,
D. M.
Hinckley
,
J. K.
Whitmer
, and
J. J.
de Pablo
, “
DNA shape dominates sequence affinity in nucleosome formation
,”
Phys. Rev. Lett.
113
,
168101
(
2014
).
39.
J.
Sun
,
Q.
Zhang
, and
T.
Schlick
, “
Electrostatic mechanism of nucleosomal array folding revealed by computer simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
8180
8185
(
2005
).
40.
G.
Arya
,
Q.
Zhang
, and
T.
Schlick
, “
Flexible histone tails in a new mesoscopic oligonucleosome model
,”
Biophys. J.
91
,
133
150
(
2006
).
41.
C. A.
Brackley
,
B.
Liebchen
,
D.
Michieletto
,
F.
Mouvet
,
P. R.
Cook
, and
D.
Marenduzzo
, “
Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains
,”
Biophys. J.
112
,
1085
1093
(
2017
).
42.
T.
Shendruk
,
M.
Bertrand
,
H.
deHaan
,
J.
Harden
, and
G.
Slater
, “
Simulating the entropic collapse of coarse-grained chromosomes
,”
Biophys. J.
108
,
810
820
(
2015
).
43.
M.
Joyeux
and
J.
Vreede
, “
A model of H-NS mediated compaction of bacterial DNA
,”
Biophys. J.
104
,
1615
1622
(
2013
).
44.
H.
Gille
,
J. B.
Egan
,
A.
Roth
, and
W.
Messer
, “
The Fis protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli
,”
Nucleic Acids Res.
19
,
4167
4172
(
1991
).
45.
M.
Bétermier
,
D.
Galas
, and
M.
Chandler
, “
Interaction of Fis protein with DNA: Bending and specificity of binding
,”
Biochimie
76
,
958
967
(
1994
).
46.
H.
Yuan
,
S.
Finkel
,
J.
Feng
,
K. M.
,
R.
Johnson
, and
R.
Dickerson
, “
The molecular structure of wild-type and a mutant Fis protein: Relationship between mutational changes and recombinational enhancer function or DNA binding
,”
Proc. Natl. Acad. Sci. U. S. A.
88
,
9558
9562
(
1991
).
47.
K.
Nowak-Lovato
,
L. B.
Alexandrov
,
A.
Banisadr
,
A. L.
Bauer
,
A. R.
Bishop
,
A.
Usheva
,
F.
Mu
,
E.
Hong-Geller
,
K.
Rasmussen
,
W. S.
Hlavacek
, and
B. S.
Alexandrov
, “
Binding of nucleoid-associated protein Fis to DNA is regulated by DNA breathing dynamics
,”
PLoS Comput. Biol.
9
,
e1002881
(
2013
).
48.
C. Q.
Pan
,
S. E.
Finkel
,
S. E.
Cramton
,
J.-A.
Feng
,
D. S.
Sigman
, and
R. C.
Johnson
, “
Variable structures of Fis-DNA complexes determined by flanking DNA protein contacts
,”
J. Mol. Biol.
264
,
675
695
(
1996
).
49.
C. Q.
Pan
,
J. A.
Feng
,
S. E.
Finkel
,
R.
Landgraf
,
D.
Sigman
, and
R. C.
Johnson
, “
Structure of the Escherichia coli Fis-DNA complex probed by protein conjugated with 1,10-phenanthroline copper(i) complex
,”
Proc. Natl. Acad. Sci. U. S. A.
91
,
1721
1725
(
1994
).
50.
S. E.
Finkel
and
R. C.
Johnson
, “
The Fis protein: It’s not just for DNA inversion anymore
,”
Mol. Microbiol.
6
,
3257
3265
(
1992
).
51.
K.
Dahlke
and
C. E.
Sing
, “
Facilitated dissociation kinetics of dimeric nucleoid-associated proteins follow a universal curve
,”
Biophys. J.
112
,
543
551
(
2017
).
52.
C. E.
Sing
,
M.
Olvera de la Cruz
, and
J. F.
Marko
, “
Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins
,”
Nucleic Acids Res.
42
,
3783
3791
(
2014
).
53.
R. I.
Kamar
,
E. J.
Banigan
,
A.
Erbas
,
R. D.
Giuntoli
,
M.
Olvera de la Cruz
,
R. C.
Johnson
, and
J. F.
Marko
, “
Facilitated dissociation of transcription factors from single DNA binding sites
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E3251
E3257
(
2017
).
54.
S. P.
Hancock
,
T.
Ghane
,
D.
Cascio
,
R.
Rohs
,
R.
Di Felice
, and
R. C.
Johnson
, “
Control of DNA minor groove width and Fis protein binding by the purine 2-amino group
,”
Nucleic Acids Res.
41
,
6750
(
2013
).
55.
S.
Stella
,
D.
Cascio
, and
R. C.
Johnson
, “
The shape of the DNA minor groove directs binding by the DNA-bending protein Fis
,”
Genes Dev.
24
,
814
826
(
2010
).
56.
G.
Bell
, “
Models for the specific adhesion of cells to cells
,”
Science
200
,
618
627
(
1978
).
57.
H.
Zhang
and
J. F.
Marko
, “
Intrinsic and force-generated cooperativity in a theory of DNA-bending proteins
,”
Phys. Rev. E
82
,
051906
(
2010
).
58.
J.
Yan
and
J. F.
Marko
, “
Effects of DNA-distorting proteins on DNA elastic response
,”
Phys. Rev. E
68
,
011905
(
2003
).
59.
J.
Yan
,
R.
Kawamura
, and
J. F.
Marko
, “
Statistics of loop formation along double helix DNAs
,”
Phys. Rev. E
71
,
061905
(
2005
).
60.
A. K.
Efremov
,
R. S.
Winardhi
, and
J.
Yan
, “
Transfer-matrix calculations of DNA polymer micromechanics under tension and torque constraints
,”
Phys. Rev. E
94
,
032404
(
2016
).
You do not currently have access to this content.