Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0–1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP–TiAP and TiAP–dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.

1.
O. H.
Zabunoglu
Reprocessing of long-cooled nuclear fuel: Process description and plant design
,” Retrospective Theses and Dissertations,
Iowa State University
,
1988
.
2.
C. T.
Lo
,
M. H. I.
Baird
, and
C.
Hanson
,
Handbook of Solvent Extraction
(
Wiley
,
New York
,
1983
).
3.
M.
Simpson
and
J.
Law
, “
Nuclear fuel reprocessing
,” INL/EXT-10–17753,
Idaho National Laboratory
,
2010
.
4.
P.
Paiva
and
P.
Malik
, “
Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes
,”
J. Radioanal. Nucl. Chem.
261
,
485
496
(
2004
).
5.
National Research Council
, “
Executive summary
,”
Nuclear Wastes: Technologies for Separation and Transmutation
(
National Academy Press
,
Washington, DC
,
1996
).
6.
A.
Wright
and
P.
Paviet-Hartmann
, “
Review of physical and chemical properties of tributyl phosphate/diluent/nitric acid systems
,”
Sep. Sci. Technol.
45
,
1753
1762
(
2010
).
7.
R. M.
Sawant
,
R. K.
Rastogi
, and
N. K.
Chaudhuri
, “
Study on the extraction of U(IV) relevant to PUREX process
,”
J. Radioanal. Nucl. Chem.
229
,
203
206
(
1998
).
8.
F. N.
von Hippel
, “
ENERGY: Plutonium and reprocessing of spent nuclear fuel
,”
Science
293
,
2397
2398
(
2001
).
9.
M. F.
Simpson
and
J. D.
Law
,
Nuclear Fuel Reprocessing
(
Idaho National Laboratory
,
2010
).
10.
R.
Chiarizia
,
M. P.
Jensen
,
M.
Borkowski
,
J. R.
Ferraro
,
P.
Thiyagarajan
, and
K. C.
Littrell
, “
Third phase formation revisited: The U(VI), HNO3-TBP, n-dodecane system
,”
Solvent Extr. Ion Exch.
21
,
1
27
(
2003
).
11.
P. R. V.
Rao
and
Z. A.
Kolarik
, “
Review of third phase formation in extraction of actinides by neutral organophosphorus extractants
,”
Solvent Extr. Ion Exch.
14
,
955
993
(
1996
).
12.
C.
Chie Miyake
,
M.
Hirose
,
T.
Yoshimura
,
M.
Ikeda
,
S.
Imoto
, and
M.
Sano
, “‘
The third phase’ of extraction processes in fuel reprocessing, (I)
,”
J. Nucl. Sci. Technol.
27
,
157
166
(
1990
).
13.
S. H.
Hassan
and
J. P.
Sukla
, “
Tri-iso-amyl phosphate (TAP): An alternative extractant to tri-butyl phosphate (TBP) for reactor fuel reprocessing
,”
J. Radioanal. Nucl. Chem.
258
,
563
573
(
2003
).
14.
D.
Das
,
V. A.
Juvekar
,
S. B.
Roy
, and
R.
Bhattacharya
, “
Co-extraction of U(VI) and HNO3 using TBP and its higher homologues TiAP and TEHP: Comparison of equilibria, kinetics, and rate of extraction
,”
Sep. Sci. Technol.
50
,
411
420
(
2015
).
15.
D. K.
Singh
,
S. K.
Garg
, and
R. K.
Bharadwaj
, “
Removal of Cr (VI) using tri-isoamyl phosphate
,”
Indian J. Chem. Technol.
7
,
205
206
(
2000
).
16.
A.
Das
,
P.
Sahu
, and
Sk. M.
Ali
, “
Molecular dynamics simulation for calibration of OPLS force field using DFT derived partial charges for screening of alkyl phosphate ligands by studying structure, dynamics and thermodynamics
,”
J. Chem. Eng. Data
62
,
2280
2295
(
2017
).
17.
A.
Suresh
,
T. G.
Srinivasan
, and
P. R. V.
Rao
, “
The effect of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior
,”
Solvent Extr. Ion Exch.
27
,
258
294
(
2009
).
18.
K. B.
Rakesh
,
A.
Suresh
, and
P. R. V.
Rao
, “
Extraction and stripping behavior of tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane with U (VI) in nitric acid media
,”
Radiochim. Acta
102
,
619
628
(
2014
).
19.
M. L.
Singh
,
S. C.
Tripathi
,
M.
Lokhande
,
P. M.
Gandhi
, and
V. G.
Gaikar
, “
Density, viscosity, and interfacial tension of binary mixture of tri-iso-amyl phosphate (TiAP) and n-dodecane: Effect of compositions and gamma absorbed doses
,”
J. Chem. Eng. Data
59
,
1130
1139
(
2014
).
20.
A.
Suresh
,
C. V. S.
Brahmmananda Rao
,
B.
Srinivasulu
,
N. L.
Sreenivasan
,
S.
Subramaniam
,
K. N.
Sabharwal
,
N.
Sivaraman
,
T. G.
Srinivasan
,
R.
Natarajan
, and
P. R.
Vasudeva Rao
, “
Development of alternate extractants for separation of actinides
,”
Energy Procedia
39
,
120
126
(
2013
).
21.
K. K.
Pal
,
S.
Mishra
,
C.
Mallika
, and
U. K.
Mudali
, “
Evolution in the physiochemical properties of alternate PUREX solvent on hydrolytic and chemical treatment
,”
Sep. Sci. Technol.
52
,
2715
2720
(
2017
).
22.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
23.
M.
Jayasinghe
and
T. L.
Beck
, “
Molecular dynamics simulations of the structure and thermodynamics of carrier-assisted uranyl ion extraction
,”
J. Phys. Chem. B
113
,
11662
11671
(
2009
).
24.
X. G.
Ye
,
R. B.
Smith
,
S. T.
Cui
,
V. F.
de Almeida
, and
B.
Khomami
, “
Influence of nitric acid on uranyl nitrate association in aqueous solutions: A molecular dynamics simulation study
,”
Solvent Extr. Ion Exch.
28
,
1
18
(
2010
).
25.
X.
Ye
,
S.
Cui
,
V. F.
de Almeida
,
B. P.
Hay
, and
B.
Khomami
, “
Uranyl nitrate complex extraction into TBP/dodecane organic solutions: A molecular dynamics study
,”
Phys. Chem. Chem. Phys.
12
,
15406
15409
(
2010
).
26.
M.
Baaden
,
M.
Burgard
, and
G.
Wipff
, “
TBP at the water–oil interface: The effect of TBP concentration and water acidity investigated by molecular dynamics simulations
,”
J. Phys. Chem. B
105
,
11131
11141
(
2001
).
27.
P.
Sahu
,
Sk. M.
Ali
, and
K. T.
Shenoy
, “
The passage of TBP-uranyl complexes from aqueous-organic interface to the organic phase: Insights from molecular dynamics simulation
,”
Phys. Chem. Chem. Phys.
18
,
23769
23784
(
2016
).
28.
P.
Sahu
,
Sk. M.
Ali
, and
K. T.
Shenoy
, “
TBP assisted uranyl extraction in water-dodecane biphasic system: Insights from molecular dynamics simulation
,”
Chemical Prod. Process Modell.
(published online).
29.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetic and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
30.
S.
Cui
,
V. F.
de Almeida
, and
B.
Khomami
, “
Molecular dynamics simulations of tri-n-butyl-phosphate/n-dodecane mixture: Thermophysical properties and molecular structure
,”
J. Phys. Chem. B
118
,
10750
10760
(
2014
).
31.
S.
Cui
,
V. F.
de Almeida
,
B. P.
Hay
,
X.
Ye
, and
B.
Khomami
, “
Molecular dynamics simulation of tri-n-butyl-phosphate liquid: A force field comparative study
,”
J. Phys. Chem. B
116
,
305
313
(
2012
).
32.
J.
Mu
,
R.
Motokawa
,
C. D.
Williams
,
K.
Akutsu
, and
S.
Nishitsuji
, “
Comparative molecular dynamics study on tri-n-butyl phosphate in organic and aqueous environments and its relevance to nuclear extraction processes
,”
J. Phys. Chem. B
120
,
5183
5193
(
2016
).
33.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
1074
(
2000
).
34.
Q. N.
Vo
,
L. X.
Dang
,
M.
Nilsson
, and
H. D.
Nguyen
, “
Quantifying dimer and trimer formation by tri-n-butyl phosphates in n-dodecane: Molecular dynamics simulations
,”
J. Phys. Chem. B
120
,
6985
6994
(
2016
).
35.
L.
Leay
,
K.
Tucker
,
A. D.
Regno
,
S. L. M.
Schroeder
,
C. A.
Sharrad
, and
A. J.
Masters
, “
The behaviour of tributyl phosphate in an organic diluent
,”
Mol. Phys.
112
,
2203
2214
(
2014
).
36.
S. W. L.
Siu
,
K.
Pluhackova
, and
R. A.
Bockmann
, “
Optimization of the OPLS-AA force field for long hydrocarbons
,”
J. Chem. Theory Comput.
8
,
1459
1470
(
2012
).
37.
W.
Allen
and
R. L.
Rowley
, “
Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models
,”
J. Chem. Phys.
106
,
10273
10281
(
1997
).
38.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A 2nd generation force–field for the simulation of proteins, nucleic-acids and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
39.
R. S.
Mulliken
, “
Electronic population analysis on LCAO–MO molecular wave functions. I
,”
J. Chem. Phys.
23
,
1833
(
1955
);
R. S.
Mulliken
, “
Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis
,”
J. Chem. Phys.
36
,
3428
(
1962
).
40.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
, “
GROMACS 3.0: A package for molecular simulation and trajectory analysis
,”
J. Mol. Model.
7
,
306
317
(
2001
).
41.
S.
Pronk
,
S.
Pall
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
854
(
2013
).
42.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
43.
M.
Abraham
,
B.
Hess
,
D.
van der Spoel
, and
E.
Lindahl
, User Manual Version 5.0.7,
The GROMACS Development Teams at the Royal Institute of Technology and Uppsala University
,
Sweden
,
2015
.
44.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
);
J. P.
Perdew
, “
Density functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
45.
R.
Ahlrichs
,
M.
Bar
,
M.
Haser
,
H.
Horn
, and
C.
Kolmel
, “
Electronic structure calculations on workstation computers: The program system turbomole
,”
Chem. Phys. Lett.
162
,
165
169
(
1989
).
46.
J.
Mark
,
M. J.
Abraham
, and
J. E.
Gready
, “
Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5
,”
J. Comput. Chem.
32
,
2031
2040
(
2011
);
[PubMed]
B. A.
Luty
,
M. E.
Davis
,
I. G.
Tironi
, and
W. F.
van Gunsteren
, “
A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems
,”
J. Mol. Simul.
14
,
11
20
(
1994
);
A. Y.
Toukmaji
and
J. A.
Broad
, “
Ewald summation techniques in perspective: A survey computer physics communications
,”
Phys. Commun.
95
,
73
92
(
1996
).
47.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
,
209
217
(
2002
).
48.
A. P.
Sunda
and
A.
Venkatnathan
, “
Parametric dependence on shear viscosity of SPC/E water equilibrium and non-equilibrium molecular dynamics simulations
,”
Mol. Simul.
39
,
728
733
(
2013
).
49.
D. M.
Petkovic
,
B. A.
Kezele
, and
D. R.
Rajic
, “
Dipole moments of some neutral organic phosphates
,”
J. Phys. Chem.
77
,
922
924
(
1973
).
50.
G. K.
Estok
and
W. W.
Wendlandt
, “
Electric moments of some alkyl phosphates and thiophosphates
,”
J. Am. Chem. Soc.
77
,
4767
4769
(
1955
).
51.
P. P.
Patil
,
S. R.
Patil
,
A. U.
Borse
, and
D. G.
Hundiwale
, “
Density, excess molar volume and apparent molar volume of binary liquid mixtures
,”
RASAYAN J. Chem.
4
,
599
604
(
2011
).
52.
S. J.
Park
and
J.
Gmehling
, “
Excess molar volumes at the 308.15 K for constituent binaries of n-decane, n-dodecane, 1-decanol and 1-dodecanol
,”
Korean J. Chem. Eng.
12
,
152
155
(
1995
).
53.
L.
Tsimering
and
A.
Kertes
, “
Excess enthalpies of tri-n-butylphosphate + hydrocarbons
,”
J. Chem. Thermodyn.
6
,
411
415
(
1974
).
54.
L.
Tsimering
and
A. S.
Kertes
, “
Enthalpies of mixing of tributyl phosphate with hydrogen bonding solvents
,”
J. Chem. Eng. Data
22
,
163
165
(
1977
).
55.
Q.
Tian
and
H.
Liu
, “
Densities and viscosities of binary mixtures of tributyl phosphate with hexene and dodecane from (298.15 to 328.15) K
,”
J. Chem. Eng. Data
52
,
892
897
(
2007
).
56.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
New York
,
1986
).
57.
F.
Eckert
and
A.
Klamt
, COSMOtherm, Version C2.1, Release01.08,
COSMOlogic GmbH & Co, KG
,
Leverkusen, Germany
,
2008
.
58.
R.
Walser
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
On the validity of Stokes’ law at the molecular level
,”
Chem. Phys. Lett.
303
,
583
586
(
1999
).
59.
N.
Ohtori
and
Y.
Ishii
, “
Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids
,”
J. Chem. Phys.
143
,
164514
(
2015
).
60.
P.
Banerjee
,
S.
Yashonath
, and
B.
Bagchi
, “
Rotation driven translational diffusion of polyatomic ions in water: A novel mechanism for breakdown of Stokes-Einstein relation
,”
J. Chem. Phys.
146
,
164502
(
2017
).
61.
B.
Chen
,
E. E.
Sigmund
, and
W. P.
Halperin
, “
Stokes-Einstein relation in super cooled aqueous solutions of glycerol
,”
Phys. Rev. Lett.
96
,
145502
(
2006
).

Supplementary Material

You do not currently have access to this content.