A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2–O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

1.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
,
J. Chem. Phys.
139
,
044309
(
2013
).
2.
Z.
Varga
,
R.
Meana-Pañeda
,
G.
Song
,
Y.
Paukku
, and
D. G.
Truhlar
,
J. Chem. Phys.
144
,
024310
(
2016
).
4.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
,
G.
Song
,
J. D.
Bender
, and
D. G.
Truhlar
,
J. Chem. Phys.
147
,
034301
(
2017
).
5.
P.
Valentini
,
P.
Norman
,
C.
Zhang
, and
T. E.
Schwartzentruber
,
Phys. Fluids
26
,
056103
(
2014
).
6.
P.
Valentini
,
T. E.
Schwartzentruber
,
J. D.
Bender
,
I.
Nompelis
, and
G. V.
Candler
, AIAA Paper 2015-474,
2015
.
7.
P.
Valentini
,
T. E.
Schwartzentruber
,
J. D.
Bender
, and
G. V.
Candler
, in
45th AIAA Thermophysics Conference, AIAA AVIATION Forum, Dallas, TX, 22-26 June 2015
(
AIAA
,
2015
), AIAA Paper No. 2015-3254.
8.
N.
Parsons
,
D. A.
Levin
,
A. C. T.
van Duin
, and
T.
Zhu
,
J. Chem. Phys.
141
,
234307
(
2014
).
9.
J. D.
Bender
,
I.
Nompelis
,
P.
Valentini
,
S.
Doraiswamy
,
T.
Schwartzentruber
,
G. V.
Candler
,
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
, in
11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
2014
.
10.
J. D.
Bender
,
P.
Valentini
,
I.
Nompelis
,
Y.
Paukku
,
Z.
Varga
,
D. G.
Truhlar
,
T.
Schwartzentruber
, and
G. V.
Candler
,
J. Chem. Phys.
143
,
054304
(
2015
).
11.
T. K.
Mankodi
,
U. V.
Bhandarkar
, and
B. P.
Puranik
,
J. Chem. Phys.
147
,
084305
(
2017
).
12.
D. A.
Andrienko
and
I. D.
Boyd
, in
47th AIAA Thermophysics Conference
(
AIAA
,
2017
), p.
3163
.
13.
D.
Lauvergnat
and
D. C.
Clary
,
J. Chem. Phys.
108
,
3566
(
1998
).
14.
R.
Hernández-Lamoneda
and
A.
Ramírez-Solís
,
J. Chem. Phys.
113
,
4139
(
2000
).
15.
A.
Varandas
and
J.
Llanio-Trujillo
,
Chem. Phys. Lett.
356
,
585
(
2002
).
16.
R.
Hernández-Lamoneda
and
A.
Ramírez-Solís
,
Chem. Phys. Lett.
321
,
191
(
2000
).
17.
R.
Hernández-Lamoneda
and
A.
Ramırez-Solıs
,
J. Chem. Phys.
120
,
10084
(
2004
).
18.
M.
Caffarel
,
R.
Hernández-Lamoneda
,
A.
Scemama
, and
A.
Ramírez-Solís
,
Phys. Rev. Lett.
99
,
153001
(
2007
).
19.
A.
Ramírez-Solís
,
F.
Jolibois
, and
L.
Maron
,
Chem. Phys. Lett.
485
,
16
(
2010
).
20.
R.
Hernández-Lamoneda
,
M.
Bartolomei
,
M. I.
Hernández
,
J.
Campos-Martínez
, and
F.
Dayou
,
J. Phys. Chem. A
109
,
11587
(
2005
), pMID: 16354051.
21.
M.
Bartolomei
,
E.
Carmona-Novillo
,
M. I.
Hernández
,
J.
Campos-Martínez
, and
R.
Hernández-Lamoneda
,
J. Chem. Phys.
128
,
214304
(
2008
).
22.
M.
Bartolomei
,
E.
Carmona-Novillo
,
M. I.
Hernández
,
J.
Campos-Martínez
, and
R.
Hernández-Lamoneda
,
J. Chem. Phys.
133
,
124311
(
2010
).
23.
T. K.
Mankodi
,
U. V.
Bhandarkar
, and
B. P.
Puranik
,
J. Chem. Phys.
146
,
204307
(
2017
).
24.
M. P.
Deskevich
,
D. J.
Nesbitt
, and
H.-J.
Werner
,
J. Chem. Phys.
120
,
7281
(
2004
).
25.
P.
Pulay
,
Int. J. Quantum Chem.
111
,
3273
(
2011
).
26.
G.
Karlström
,
R.
Lindh
,
P.
Åke Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
, in
Proceedings of the Symposium on Software Development for Process and Materials Design
[
Comput. Mater. Sci.
28
,
222
(
2003
)].
27.
V.
Veryazov
,
P.-O.
Widmark
,
L.
Serrano-Andrés
,
R.
Lindh
, and
B. O.
Roos
,
Int. J. Quantum Chem.
100
,
626
(
2004
).
28.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-K.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
,
J. Comput. Chem.
31
,
224
(
2010
).
29.
T.
Müller
,
S. S.
Xantheas
,
H.
Dachsel
,
R. J.
Harrison
,
J.
Nieplocha
,
R.
Shepard
,
G. S.
Kedziora
, and
H.
Lischka
,
Chem. Phys. Lett.
293
,
72
(
1998
).
30.
R.
Dawes
,
P.
Lolur
,
A.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
139
,
201103
(
2013
).
31.
D. W.
Arnold
,
C.
Xu
,
E. H.
Kim
, and
D. M.
Neumark
,
J. Chem. Phys.
101
,
912
(
1994
).
32.
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
33.
E. T.
Seidl
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
96
,
1176
(
1992
).

Supplementary Material

You do not currently have access to this content.