We propose a variational approach for the calculation of the quantum entanglement entropy of assemblies of rotating dipolar molecules. A basis truncation scheme based on the total angular momentum quantum number is proposed. The method is tested on hydrogen fluoride (HF) molecules confined in C60 fullerene cages themselves trapped in a nanotube to form a carbon peapod. The rotational degrees of freedom of the HF molecules and dipolar interactions between neighboring molecules are considered in our model Hamiltonian. Both screened and unscreened dipoles are simulated and results are obtained for the ground state and one excited state that is expected to be accessible via a far-infrared collective excitation. The effect of basis truncation on energetic and entanglement properties is examined and discussed in terms of size extensivity. It is empirically found that for unscreened dipoles, a total angular momentum cutoff that increases linearly with the number of rotors is required in order to obtain proper system size scaling of the chemical potential and entanglement entropy. Recent experiments [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] suggest substantial screening of the HF dipole moment, so much smaller basis sets are required to obtain converged results in this realistic case. Static correlation functions are also computed and are shown to decay much quicker in the case of screened dipoles. Our variational results are also used to test the accuracy of perturbative and pairwise ansatz treatments.

2.
C. H.
Bennett
and
D. P.
DiVincenzo
,
Nature
404
,
247
(
2000
).
3.
M. D.
Lukin
,
M.
Fleischhauer
,
R.
Cote
,
L. M.
Duan
,
D.
Jaksch
,
J. I.
Cirac
, and
P.
Zoller
,
Phys. Rev. Lett.
87
,
037901
(
2001
).
4.
R. H.
Hadfield
,
Nat. Photonics
3
,
696
(
2009
).
5.
H. W.
Kroto
,
A. W.
Allaf
, and
S. P.
Balm
,
Chem. Rev.
91
,
1213
(
1991
).
7.
J. L.
Martins
,
N.
Troullier
, and
J. H.
Weaver
,
Chem. Phys. Lett.
180
,
457
(
1991
).
8.
B. W.
Smith
,
M.
Monthioux
, and
D. E.
Luzzi
,
Nature
396
,
323
(
1998
).
9.
C. H.
Lee
,
K. T.
Kang
,
K. S.
Park
,
M. S.
Kim
,
H. S.
Kim
,
H. G.
Kim
,
J. E.
Fischer
, and
A. T.
Johnson
,
Jpn. J. Appl. Phys., Part 1
42
,
5392
(
2003
).
10.
S. C.
Benjamin
 et al,
J. Phys.: Condens. Matter
18
,
S867
(
2006
).
11.
P.
Avouris
,
Z.
Chen
, and
V.
Perebeinos
,
Nat. Nanotechnol.
2
,
605
(
2007
).
12.
Z.
Chen
,
Y.-M.
Lin
,
M. J.
Rooks
, and
P.
Avouris
,
Phys. E
40
,
228
(
2007
).
13.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
14.
B.
Xu
and
X.
Chen
,
Phys. Rev. Lett.
110
,
156103
(
2013
).
15.
M.
Xu
,
S.
Ye
, and
Z.
Bačić
,
J. Chem. Phys. Lett.
6
,
3721
(
2015
).
16.
A.
Krachmalnicoff
 et al,
Nat. Chem.
8
,
953
(
2016
).
17.
P. M.
Felker
and
Z.
Bačić
,
J. Chem. Phys.
146
,
084303
(
2017
).
18.
H. A.
Gersch
and
G. C.
Knollman
,
Phys. Rev.
129
,
959
(
1963
).
19.
Q.
Wei
,
S.
Kais
, and
Y. P.
Chen
,
J. Chem. Phys.
132
,
121104
(
2010
).
20.
J.
Zhu
,
S.
Kais
,
Q.
Wei
,
D.
Herschbach
, and
B.
Friedrich
,
J. Chem. Phys.
138
,
024104
(
2013
).
21.
M.
Karra
,
K.
Sharma
,
B.
Friedrich
,
S.
Kais
, and
D.
Herschbach
,
J. Chem. Phys.
144
,
094301
(
2016
).
22.
Q.
Wei
,
Y.
Cao
,
S.
Kais
,
B.
Friedrich
, and
D.
Herschbach
,
ChemPhysChem
17
,
3714
(
2016
).
23.
F. G. S. L.
Brandão
and
G.
Gour
,
Phys. Rev. Lett.
115
,
070503
(
2015
).
24.
T.
Halverson
and
B.
Poirier
,
Chem. Phys. Lett.
624
,
37
(
2015
).
25.
T.
Halverson
and
B.
Poirier
,
J. Phys. Chem. A
119
,
12417
(
2015
).
26.
H.-J.
Werner
and
P.
Rosmus
,
J. Chem. Phys.
73
,
2319
(
1980
).
27.
A. A.
Mason
and
A. H.
Nielsen
,
J. Opt. Soc. Am.
57
,
1464
(
1967
).
28.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
,
ARPACK Users’ Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods
(
SIAM
,
1998
).
29.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
30.
P. M.
Felker
and
Z.
Bačić
,
Chem. Phys. Lett.
683
,
172
(
2017
).
31.
32.
S. F.
Yelin
,
K.
Kirby
, and
R.
Côté
,
Phys. Rev. A
74
,
050301
(
2006
).
33.
M.
Ortner
,
Y. L.
Zhou
,
P.
Rabl
, and
P.
Zoller
,
Quantum Inf. Process.
10
,
793
(
2011
).
34.
M. A.
Baranov
,
M.
Dalmonte
,
G.
Pupillo
, and
P.
Zoller
,
Chem. Rev.
112
,
5012
(
2012
).
35.
B.
Abolins
,
R.
Zillich
, and
K.
Whaley
,
J. Low Temp. Phys.
165
,
249
(
2011
).
36.
B.
Abolins
,
R.
Zillich
, and
K.
Whaley
,
J. Low Temp. Phys.
170
,
131
(
2013
).
37.
C.
Herdman
,
P.-N.
Roy
,
R.
Melko
, and
A.
Del Maestro
,
Phys. Rev. B
89
,
140501
(
2014
).
38.
C. M.
Herdman
,
S.
Inglis
,
P.-N.
Roy
,
R. G.
Melko
, and
A. D.
Maestro
,
Phys. Rev. E
90
,
013308
(
2014
).
39.
C. M.
Herdman
,
P.-N.
Roy
,
R. G.
Melko
, and
A. D.
Maestro
,
Phys. Rev. B
94
,
064524
(
2016
).
40.
C. M.
Herdman
,
P. N.
Roy
,
R. G.
Melko
, and
A. D.
Maestro
,
Nat. Phys.
13
,
556
(
2017
).
41.
Y. N.
Kalugina
and
P.-N.
Roy
,
J. Chem. Phys.
147
,
244303
(
2017
).
42.
43.
L.
Susskind
,
J. Math. Phys.
36
,
6377
(
1995
).
44.
M. B.
Hastings
,
J. Stat. Mech.: Theory Exp.
2007
,
P08024
.
45.
J.
Eisert
,
M.
Cramer
, and
M. B.
Plenio
,
Rev. Mod. Phys.
82
,
277
(
2010
).
You do not currently have access to this content.