The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨tR and ⟨tT associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨tR/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier region before exiting. A classical Wigner approximation, using classical trajectories which upon reaching an edge of the barrier are reflected or transmitted as if the edge was a step potential, is quantitative in the incoherent regime. The implications of the coherence observed on resonance reactive scattering are discussed.

1.
L.
Nordheim
,
Z. Phys.
46
,
833
(
1927
).
2.
E.
Merzbacher
,
Phys. Today
55
(
8
),
44
(
2002
).
3.
A.
Messiah
,
Quantum Mechanics
(
North Holland
,
Amsterdam
,
1970
), Vol.
1
, Chap. 3.
4.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics: Volume I
(
Wiley
,
1991
).
5.
B.
Sahu
,
S. K.
Agarwalla
, and
C. S.
Shastry
,
J. Phys. A: Math. Gen.
35
,
4349
(
2002
).
6.
A.U.
Maheswari
,
P.
Prema
, and
C. S.
Shastry
,
Am. J. Phys.
78
,
412
(
2010
) [there is a factor of 2 error in their Eq. (15)].
7.
Lecture Notes in Physics
, edited by
G.
Muga
,
R. S.
Mayato
, and
I.
Egusquiza
(
Springer
,
2008
), Vol.
734
.
8.
Lecture Notes in Physics
, edited by
G.
Muga
,
A.
Ruschhaupt
, and
A.
delCampo
(
Springer
,
2009
), Vol.
789
.
9.
10.
J.
Léon
,
J.
Julve
,
P.
Pitanga
, and
F. J.
de Urries
,
Phys. Rev. A
61
,
62101
(
2000
).
11.
A. E.
Bernardini
,
S.
de Leo
, and
P. P.
Rotelli
,
Mod. Phys. Lett. A
19
,
2717
2725
(
2004
).
12.
G.
Hummer
,
J. Chem. Phys.
120
,
516
(
2004
).
13.
A. M.
Berezhkovskii
,
G.
Hummer
, and
S. M.
Bezrukov
,
Phys. Rev. Lett.
97
,
020601
(
2006
).
14.
S.
Chaudhury
and
D. E.
Makarov
,
J. Chem. Phys.
133
,
034118
(
2010
).
15.
K.
Neupane
,
D. A. N.
Foster
,
D. R.
Dee
,
H.
Yu
,
F.
Wang
, and
M. T.
Woodside
,
Science
352
,
239
242
(
2016
).
16.
E.
Pollak
,
Phys. Chem. Chem. Phys.
18
,
28872
28882
(
2016
).
17.
18.
19.
20.
A.
Fuhrmanek
,
A. M.
Lance
,
C.
Tuchendler
,
P.
Grangier
,
Y. R.
Sortais
, and
A.
Browaeys
,
New J. Phys.
12
,
053028
(
2010
).
21.
J.-J.
Du
,
W.-F.
Li
,
R.-J.
Wen
,
G.
Li
, and
T.-C.
Zhang
,
Laser Phys. Lett.
12
,
065501
(
2015
).
22.
J.
Petersen
and
E.
Pollak
,
J. Phys. Chem. Lett.
9
,
4017
(
2017
).
23.
24.
G. J.
Papadopoulos
,
Task Q.
19
,
65
74
(
2015
).
25.
D. G.
Truhlar
and
A.
Kuppermann
,
J. Chem. Phys.
52
,
3841
(
1970
).
26.
G. C.
Schatz
and
A.
Kuppermann
,
J. Chem. Phys.
59
,
964
(
1973
).
27.
G. C.
Schatz
,
J. M.
Bowman
, and
A.
Kuppermann
,
J. Chem. Phys.
63
,
674
(
1975
).
28.
E.
Pollak
and
M. S.
Child
,
Chem. Phys.
60
,
23
(
1981
).
29.
R. D.
Levine
and
S. F.
Wu
,
Chem. Phys. Lett.
11
,
557
(
1971
).
30.
A.
Kuppermann
, in
Potential Energy Surfaces and Dynamics Calculations
, edited by
D. G.
Truhlar
(
Plenum
,
New York
,
1981
), Chap. 16, and references therein.
31.
N.
AbuSalbi
,
D. J.
Kouri
,
M.
Baer
, and
E.
Pollak
,
J. Chem. Phys.
82
,
4500
(
1985
).
You do not currently have access to this content.