We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

1.
T. R.
Dyke
,
K. M.
Mack
, and
J. S.
Muenter
,
J. Chem. Phys.
66
,
498
(
1997
).
2.
E. N.
Karyakin
,
G. T.
Fraser
,
F. J.
Lovas
,
R. D.
Suenram
, and
M. J.
Fujitake
,
J. Chem. Phys.
102
,
1114
(
1995
).
3.
K. L.
Busarow
,
R. C.
Cohen
,
G. A.
Blake
,
K. B.
Laughlin
,
Y. T.
Lee
, and
R. J.
Saykally
,
J. Chem. Phys.
90
,
3937
(
1989
).
4.
L. B.
Braly
,
K.
Liu
,
M. G.
Brown
,
F. N.
Keutsch
,
R. S.
Fellers
, and
R. J.
Saykally
,
J. Chem. Phys.
112
,
10314
(
2000
).
5.
N.
Pugliano
,
J. D.
Cruzan
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
98
,
6600
(
1993
).
6.
J. B.
Paul
,
R. A.
Provencal
,
C.
Chapo
,
K.
Roth
,
R.
Casaes
, and
R. J.
Saykally
,
J. Phys. Chem. A
103
,
2972
(
1999
).
7.
F. N.
Keutsch
,
N.
Goldman
,
H. A.
Harker
,
C.
Leforestier
, and
R. J.
Saykally
,
Mol. Phys.
101
,
3477
(
2003
).
8.
H. A.
Harker
,
F. N.
Keutsch
,
C.
Leforestier
,
Y.
Scribano
,
J.-X.
Han
, and
R. J.
Saykally
,
Mol. Phys.
105
,
497
(
2007
).
9.
H. A.
Harker
,
F. N.
Keutsch
,
C.
Leforestier
,
Y.
Scribano
,
J.-X.
Han
, and
R. J.
Saykally
,
Mol. Phys.
105
,
513
(
2007
).
10.
B. E.
Rocher-Casterline
,
L. C.
Ch’ng
,
K.
Mollner
, and
H.
Reisler
,
J. Chem. Phys.
134
,
211101
(
2011
).
11.
W. T. S.
Cole
,
R. S.
Fellers
,
M. R.
Viant
,
C.
Leforestier
, and
R. J.
Saykally
,
J. Chem. Phys.
143
,
154306
(
2015
).
12.
A.
Mukhopadhyay
,
W. T. S.
Cole
, and
R. J.
Saykally
,
Chem. Phys. Lett.
633
,
13
(
2015
).
13.
T. R.
Dyke
,
J. Chem. Phys.
66
,
492
(
1977
).
14.
S. C.
Althorpe
and
D. C.
Clary
,
J. Chem. Phys.
101
,
3603
(
1994
).
15.
S. C.
Althorpe
and
D. C.
Clary
,
J. Chem. Phys.
102
,
4390
(
1995
).
16.
J. K.
Gregory
and
D. C.
Clary
,
J. Chem. Phys.
102
,
7817
(
1995
).
17.
H.
Chen
,
S.
Liu
, and
J. C.
Light
,
J. Chem. Phys.
110
,
168
(
1999
).
18.
C.
Leforestier
,
L. B.
Braly
,
K.
Liu
,
M. J.
Elroy
, and
R. J.
Saykally
,
J. Chem. Phys.
106
,
8527
(
1997
).
19.
G. C.
Groenenboom
,
P. E. S.
Wormer
,
A.
van der Avoird
,
E. M.
Mas
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Phys.
113
,
6702
(
2000
).
20.
M. J.
Smit
,
G. C.
Groenenboom
,
P. E. S.
Wormer
,
A.
van der Avoird
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem.
105
,
6212
(
2001
).
21.
W.
Cencek
,
K.
Szalewicz
,
C.
Leforestier
,
R.
van Harrevelt
, and
A.
van der Avoird
,
Phys. Chem. Chem. Phys.
10
,
4716
(
2008
).
22.
R. E. A.
Kelly
,
J.
Tennyson
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Quant. Spectrosc. Radiat. Transfer
111
,
1262
(
2010
).
23.
J.
Tennyson
,
M. J.
Barber
, and
R. E. A.
Kelly
,
Philos. Trans. R. Soc., A
370
,
2656
(
2012
).
24.
J. O.
Richardson
,
S. C.
Althorpe
, and
D. J.
Wales
,
J. Chem. Phys.
135
,
124109
(
2011
).
25.
C.
Leforestier
,
F.
Gatti
,
R. S.
Fellers
, and
R. J.
Saykally
,
J. Chem. Phys.
117
,
8710
(
2002
).
26.
C.
Leforestier
,
K.
Szalewicz
, and
A.
van der Avoid
,
J. Chem. Phys.
137
,
014305
(
2012
).
27.
C.
Leforestier
,
Philos. Trans. R. Soc., A
370
,
2675
(
2012
).
28.
A.
Shank
,
Y.
Wang
,
A.
Kaledin
,
B.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
130
,
144314
(
2009
).
29.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
134
,
094509
(
2011
).
30.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
,
5395
(
2013
).
31.
P.
Jankowski
,
G.
Murdachaew
,
R.
Bukowski
,
O.
Akin-Ojo
,
C.
Leforestier
, and
K.
Szalewicz
,
J. Phys. Chem. A
119
,
2940
(
2015
).
32.
H. A.
Gebbie
,
W. J.
Burroughs
,
J.
Chamberlain
,
J. E.
Harries
, and
R. G.
Jones
,
Nature
221
,
143
(
1969
).
33.
U.
Gora
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
,
J. Chem. Phys.
135
,
224102
(
2011
).
34.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
1599
(
2014
).
35.
T.
Carrington
, Jr.
,
J. Chem. Phys.
146
,
120902
(
2017
).
36.
Z.
Bačić
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
37.
38.
J.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
39.
G.
Brocks
,
A.
van der Avoird
,
B. T.
Sutcliffe
, and
J.
Tennyson
,
Mol. Phys.
50
,
1025
(
1983
).
40.
C.
Iung
and
C.
Leforestier
,
J. Chem. Phys.
90
,
3198
(
1989
).
41.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
42.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
108
,
6068
(
1998
).
43.
E. H. T.
Olthof
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
101
,
8430
(
1994
).
44.
E. H. T.
Olthof
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
101
,
8443
(
1994
).
45.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
134
,
044313-1
044313-15
(
2011
).
46.
A.
van der Avoird
and
D. J.
Nesbitt
,
J. Chem. Phys.
134
,
044314
(
2011
).
47.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
143
,
024303
(
2015
).
48.
X.-G.
Wang
,
T.
Carrington
, Jr.
,
J.
Tang
, and
A. R. W.
McKellar
,
J. Chem. Phys.
123
,
034301
(
2005
).
49.
R.
Dawes
,
X.-G.
Wang
,
A. W.
Jasper
, and
T.
Carrington
, Jr.
,
J. Chem. Phys.
133
,
134304
(
2010
).
50.
X.-G.
Wang
,
T.
Carrington
, Jr.
,
R.
Dawes
, and
A. W.
Jasper
,
J. Mol. Spectrosc.
268
,
53
(
2011
).
51.
J.
Brown
,
X.-G.
Wang
,
R.
Dawes
, and
T.
Carrington
,
J. Chem. Phys.
136
,
134306
(
2012
).
52.
A.
van der Avoird
,
R.
Podeszwa
,
K.
Szalewicz
,
C.
Leforestier
,
R.
van Harrevelt
,
P. R.
Bunker
,
M.
Schnell
,
G.
von Helden
, and
G.
Meijer
,
Phys. Chem. Chem. Phys.
12
,
8219
(
2010
).
53.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
117
,
6923
(
2002
).
54.
H.-G.
Yu
,
J. Chem. Phys.
117
,
8190
(
2002
).
55.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
146
,
104105
(
2017
).
56.
F.
Gatti
,
J. Chem. Phys.
111
,
7225
(
1999
).
57.
F. T.
Smith
,
Phys. Rev. Lett.
45
,
1157
(
1980
).
58.
H.
Wei
and
T.
Carrington
, Jr.
,
Chem. Phys. Lett.
287
,
289
(
1998
).
59.
R. N.
Zare
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
60.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Dover
,
New York
,
1980
).
61.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
114
,
1473
(
2001
).
62.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
114
,
1467
(
2001
).
63.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
,
ARPACK Users Guide: Solution of Large Eigenvalue Problems with Implicitly Restarted Arnoldi Methods
(
SIAM
,
Philadelphia
,
1998
).
64.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Phys. Chem. A
111
,
10220
(
2007
).
65.
J. F.
Cornwell
,
Group Theory in Physics
, An Introduction (
Academic
,
San Diego, CA
,
1987
), Appendix.
66.
H.-G.
Yu
,
J. Chem. Phys.
120
,
2270
(
2004
).
67.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
68.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
129
,
234102
(
2008
).
69.
H.-S.
Lee
and
J. C.
Light
,
J. Chem. Phys.
120
,
4626
(
2004
).
70.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
118
,
6946
(
2003
).
71.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
121
,
2937
(
2004
).
72.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
123
,
154303
(
2005
).
73.
C.
Leforestier
,
J. Chem. Phys.
94
,
6388
(
1991
).
74.
C.
Leforestier
,
J. Chem. Phys.
101
,
7357
(
1994
).
75.
P.
Sarkar
,
N.
Poulin
, and
T.
Carrington
,
J. Chem. Phys.
110
,
10269
10274
(
1999
).
76.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
138
,
104106
(
2013
).
77.
X. T.
Wu
and
E. F.
Hayes
,
J. Chem. Phys.
107
,
2705
(
1997
).
78.
NITROGEN, Numerical and Iterative Techniques for Rovibronic Energies with General Internal Coordinates, a program by P. B. Changala, http://www.colorado.edu/nitrogen.
79.
H.
Wei
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
97
,
3029
(
1992
).
80.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
81.
M. J.
Bramley
,
J. W.
Tromp
,
T.
Carrington
, and
G. C.
Corey
,
J. Chem. Phys.
100
,
6175
6194
(
1994
).
82.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
83.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
84.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
85.
L. H.
Coudert
and
J. T.
Hougen
,
J. Mol. Spectrosc.
130
,
86
(
1988
).
86.
C.
Leforestier
, private communication (
30 June 2017
), levels of [6 + 6]D calculations presented in Ref. 26.
87.
A.
Gustavo
and
T.
Carrington
,
J. Chem. Phys.
137
,
174108-
1
174108-13
(
2012
).
88.
A.
Gustavo
and
T.
Carrington
,
J. Chem. Phys.
134
,
054126-
1
054126-16
(
2011
).
89.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
Angew. Chem., Int. Ed.
46
,
6918
(
2007
).
90.
T.
Halverson
and
B.
Poirier
,
J. Phys. Chem. A
119
,
12417
(
2015
).
91.
S.
Manzhos
,
T.
Carrington
, Jr.
,
L.
Laverdure
, and
N.
Mosey
,
J. Phys. Chem. A
119
,
9557
(
2015
).
92.
M. D.
Coutinho-Neto
,
A.
Viel
, and
U.
Manthe
,
J. Chem. Phys.
121
(
19
),
9207
9210
(
2004
).
93.
P.
Thomas
and
T.
Carrington
,
J. Phys. Chem. A
119
,
13074
(
2015
).
94.
A.
Leclerc
and
T.
Carrington
,
J. Chem. Phys.
140
,
174111
(
2014
).
95.
J.
Brown
and
T.
Carrington
,
J. Chem. Phys.
145
,
144104
(
2016
).
96.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
(
3
),
533
549
(
2003
).
97.
O.
Christiansen
,
Phys. Chem. Chem. Phys.
9
,
2942
(
2007
).
98.
G.
Rauhut
,
J. Chem. Phys.
127
,
184109
(
2007
).
99.
M.
Odunlami
,
V.
Le Bris
,
D.
Bégué
,
I.
Baraille
, and
O.
Coulaud
,
J. Chem. Phys.
146
,
214108
(
2017
).
100.
P.
Felker
and
Z.
Bačić
,
J. Chem. Phys.
146
,
084303
(
2017
).
101.
P.
Felker
and
Z.
Bačić
,
Chem. Phys. Lett.
683
,
172
(
2017
).
102.
H.
Romanowski
,
J. M.
Bowman
, and
L. B.
Harding
,
J. Chem. Phys.
82
,
4155
(
1985
).
103.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
104.
H.-G.
Yu
and
G.
Nyman
,
J. Chem. Phys.
110
,
11133
(
1999
).
105.
S.-W.
Huang
and
T.
Carrington
,
J. Chem. Phys.
112
,
8765
8771
(
2000
).
106.
A.
van der Avoird
,
P. E. S.
Wormer
, and
R.
Moszynski
,
Chem. Rev.
94
,
1931
1974
(
1994
).
107.
D. H.
Zhang
and
J. C.
Light
,
J. Chem. Phys.
104
,
4544
(
1996
).

Supplementary Material

You do not currently have access to this content.