Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN–HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN–HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN–HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN–HNC systems, the optimal value of the a1 CA parameter is approximately 13, corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ∼0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.

1.
R.
Feynman
and
A.
Hibbs
,
Quantum Mechanics and Path Integrals: Emended Edition
(
Dover Publications, Incorporated
,
2012
).
2.
R. P.
Feynman
,
Statistical Mechanics
(
Benjamin
,
New York
,
1972
).
3.
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
).
4.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
5.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
Oxford
,
2010
).
6.
S.
Chempath
,
C.
Predescu
, and
A. T.
Bell
,
J. Chem. Phys.
124
,
234101
(
2006
).
7.
T. F.
Miller
and
D. C.
Clary
,
J. Chem. Phys.
116
,
8262
(
2002
).
8.
J. A.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
9.
R.
Ramrez
and
C. P.
Herrero
,
J. Chem. Phys.
133
,
144511
(
2010
).
10.
M.
Boninsegni
,
N. V.
Prokof’ev
, and
B. V.
Svistunov
,
Phys. Rev. E
74
,
036701
(
2006
).
11.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Pearson Education, Limited
,
2013
).
12.
R. Q.
Topper
and
D. G.
Truhlar
,
J. Chem. Phys.
97
,
3647
(
1992
).
13.
C.
Chakravarty
,
Int. Rev. Phys. Chem.
16
,
421
(
1997
).
14.
H. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
15.
M.
Takahashi
and
M.
Imada
,
J. Phys. Soc. Jpn.
53
,
3765
(
1984
).
16.
X.
Li
and
J. Q.
Broughton
,
J. Chem. Phys.
86
,
5094
(
1987
).
18.
19.
S.
Jang
,
S.
Jang
, and
G. A.
Voth
,
J. Chem. Phys.
115
,
7832
(
2001
).
20.
T. M.
Yamamoto
,
J. Chem. Phys.
123
,
104101
(
2005
).
21.
S. A.
Chin
and
C. R.
Chen
,
J. Chem. Phys.
114
,
7338
(
2001
).
22.
K.
Sakkos
,
J.
Casulleras
, and
J.
Boronat
,
J. Chem. Phys.
130
,
204109
(
2009
).
23.
S. R.
Scuro
and
S. A.
Chin
,
Phys. Rev. E
71
,
056703
(
2005
).
24.
R. O.
Weht
,
J.
Kohanoff
,
D. A.
Estrin
, and
C.
Chakravarty
,
J. Chem. Phys.
108
,
8848
(
1998
).
25.
A.
Azuri
,
H.
Engel
,
D.
Doron
, and
D. T.
Major
,
J. Chem. Theory Comput.
7
,
1273
(
2011
).
26.
D. T.
Major
and
M.
Weitman
,
J. Am. Chem. Soc.
134
,
19454
(
2012
).
27.
H.
Engel
,
R.
Eitan
,
A.
Azuri
, and
D. T.
Major
,
Chem. Phys.
450
,
95
(
2015
).
28.
V.
Kapil
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
145
,
234103
(
2016
).
29.
Y.
Kamibayashi
and
S.
Miura
,
J. Chem. Phys.
145
,
074114
(
2016
).
30.
H.
De Raedt
and
B.
De Raedt
,
Phys. Rev. A
28
,
3575
(
1983
).
31.
32.
M. F.
Herman
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
76
,
5150
(
1982
).
33.
L.
Brualla
,
K.
Sakkos
,
J.
Boronat
, and
J.
Casulleras
,
J. Chem. Phys.
121
,
636
(
2004
).
34.
O. N.
Osychenko
,
R.
Rota
, and
J.
Boronat
,
Phys. Rev. B
85
,
224513
(
2012
).
35.
O. L.
Polyansky
,
P.
Jensen
, and
J.
Tennyson
,
J. Chem. Phys.
105
,
6490
(
1996
).
36.
J.
Murrell
,
S.
Carter
, and
L.
Halonen
,
J. Mol. Spectrosc.
93
,
307
(
1982
).
37.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
38.
L. P.
Lindoy
,
S. J.
Kolmann
,
J. H.
D’Arcy
,
D. L.
Crittenden
, and
M. J. T.
Jordan
,
J. Chem. Phys.
143
,
194302
(
2015
).

Supplementary Material

You do not currently have access to this content.