The problem of optimizing Lennard-Jones (L-J) potential parameters to perform collision cross section (CCS) calculations in ion mobility spectrometry has been undertaken. The experimental CCS of 16 small organic molecules containing carbon, hydrogen, oxygen, nitrogen, and fluoride in N2 was compared to numerical calculations using Density Functional Theory (DFT). CCS calculations were performed using the momentum transfer algorithm IMoS and a 4-6-12 potential without incorporating the ion-quadrupole potential. A ceteris paribus optimization method was used to optimize the intercept σ and potential well-depth ϵ for the given atoms. This method yields important information that otherwise would remain concealed. Results show that the optimized L-J parameters are not necessarily unique with intercept and well-depth following an exponential relation at an existing line of minimums. Similarly, the method shows that some molecules containing atoms of interest may be ill-conditioned candidates to perform optimizations of the L-J parameters. The final calculated CCSs for the chosen parameters differ 1% on average from their experimental counterparts. This result conveys the notion that DFT calculations can indeed be used as potential candidates for CCS calculations and that effects, such as the ion-quadrupole potential or diffuse scattering, can be embedded into the L-J parameters without loss of accuracy but with a large increase in computational efficiency.

1.
E. A.
Mason
and
E. W.
McDaniel
,
Transport Properties of Ions in Gases
(
John Wiley & Sons
,
New York
,
1988
).
2.
A. A.
Shvartsburg
and
M. F.
Jarrold
, “
An exact hard-spheres scattering model for the mobilities of polyatomic ions
,”
Chem. Phys. Lett.
261
,
86
91
(
1996
).
3.
M. F.
Mesleh
,
J. M.
Hunter
,
A. A.
Shvartsburg
,
G. C.
Schatz
, and
M. F.
Jarrold
, “
Structural information from ion mobility measurements: Effects of the long-range potential
,”
J. Phys. Chem. A
101
,
968
(
1997
);
M. F.
Mesleh
,
J. M.
Hunter
,
A. A.
Shvartsburg
,
G. C.
Schatz
, and
M. F.
Jarrold
,
J. Phys. Chem. A
100
,
16082
(
1996
).
4.
Z. G.
Li
and
H.
Wang
, “
Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime
,”
Phys. Rev. E
68
,
061206
(
2003
).
5.
J. C.
May
,
C. R.
Goodwin
,
N. M.
Lareau
,
K. L.
Leaptrot
,
C. B.
Morris
,
R. T.
Kurulugama
,
A.
Mordehai
,
C.
Klein
,
W.
Barry
,
E.
Darland
,
G.
Overney
,
K.
Imatani
,
G. C.
Stafford
,
J. C.
Fjeldsted
, and
J. A.
McLean
, “
Conformational ordering of biomolecules in the gas phase: Nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer
,”
Anal. Chem.
86
,
2107
2116
(
2014
).
6.
K. L.
Davidson
and
M. F.
Bush
, “
Effects of drift gas selection on the ambient-temperature, ion mobility mass spectrometry analysis of amino acids
,”
Anal. Chem.
89
,
2017
2023
(
2017
).
7.
C.
Bleiholder
,
N. R.
Johnson
,
S.
Contreras
,
T.
Wyttenbach
, and
M. T.
Bowers
, “
Molecular structures and ion mobility cross sections: Analysis of the effects of He and N2 buffer gas
,”
Anal. Chem.
87
,
7196
7203
(
2015
).
8.
R. T.
Kurulugama
,
E.
Darland
,
F.
Kuhlmann
,
G.
Stafford
, and
J.
Fjeldsted
, “
Evaluation of drift gas selection in complex sample analyses using a high performance drift tube ion mobility-QTOF mass spectrometer
,”
Analyst
14
,
6834
6844
(
2015
).
9.
C. J.
Hogan
,
B. T.
Ruotolo
,
C. V.
Robinson
, and
J.
Fernandez de la Mora
, “
Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex
,”
J. Phys. Chem. B
115
,
3614
3621
(
2011
).
10.
J. F.
de la Mora
, “
Free-molecule mobility of polyhedra and other convex hard-bodies
,”
J. Aerosol Sci.
33
,
477
489
(
2002
).
11.
R. A.
Millikan
, “
The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces
,”
Phys. Rev.
22
,
1
23
(
1923
).
12.
P. S.
Epstein
, “
On the resistance experienced by spheres in their motion through gases
,”
Phys. Rev.
23
,
710
(
1924
).
13.
C.
Larriba
,
C. J.
Hogan
,
M.
Attoui
,
R.
Borrajo
,
J. F.
Garcia
, and
J. F.
de la Mora
, “
The mobility-volume relationship below 3.0 nm examined by tandem mobility-mass measurement
,”
Aerosol Sci. Technol.
45
,
453
467
(
2011
).
14.
J.
Fernandez-Garcia
and
J. F.
de la Mora
, “
Electrical mobilities of multiply charged ionic-liquid nanodrops in air and carbon dioxide over a wide temperature range: Influence of ion-induced dipole interactions
,”
Phys. Chem. Chem. Phys.
16
,
20500
20513
(
2014
).
15.
H.
Kim
,
H. I.
Kim
,
P. V.
Johnson
,
L. W.
Beegle
,
J. L.
Beauchamp
,
W. A.
Goddard
, and
I.
Kanik
, “
Experimental and theoretical investigation into the correlation between mass and ion mobility for choline and other ammonium cations in N2
,”
Anal. Chem.
80
,
1928
1936
(
2008
).
16.
H. I.
Kim
,
H.
Kim
,
E. S.
Pang
,
E. K.
Ryu
,
L. W.
Beegle
,
J. A.
Loo
,
W. A.
Goddard
, and
I.
Kanik
, “
Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry
,”
Anal. Chem.
81
,
8289
8297
(
2009
).
17.
C.
Larriba
and
C. J.
Hogan
, “
Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation
,”
J. Comput. Phys.
251
,
344
363
(
2013
).
18.
C.
Larriba
and
C. J.
Hogan
, “
Ion mobilities in diatomic gases: Measurement versus prediction with non-specular scattering models
,”
J. Phys. Chem. A
117
,
3887
3901
(
2013
).
19.
J.
Fernandez-Garcia
and
J. F.
de la Mora
, “
Measuring the effect of ion-induced drift-gas polarization on the electrical mobilities of multiply-charged ionic liquid nanodrops in air
,”
J. Am. Soc. Mass. Spectrom.
24
,
1872
1889
(
2013
).
20.
C.
Larriba
and
J. F.
de la Mora
, “
The gas phase structure of coulombically stretched polyethylene glycol ions
,”
J. Phys. Chem. B
116
,
593
598
(
2012
).
21.
P.
Garciaybarra
and
D. E.
Rosner
, “
Thermophoretic properties of nonspherical particles and large molecules
,”
AIChE J.
35
,
139
147
(
1989
).
22.
D. W.
Mackowski
, “
Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime
,”
J. Aerosol Sci.
37
,
242
259
(
2006
).
23.
C.
Larriba-Andaluz
,
J.
Fernandez-Garcia
,
M. A.
Ewing
,
C. J.
Hogan
, and
D. E.
Clemmer
, “
Gas molecule scattering and ion mobility measurements for organic macro-ions in He versus N2 environments
,”
Phys. Chem. Chem. Phys.
17
,
15019
15029
(
2015
).
24.
C.
Lapthorn
,
F. S.
Pullen
,
B. Z.
Chowdhry
,
P.
Wright
,
G. L.
Perkins
, and
Y.
Heredia
, “
How useful is molecular modelling in combination with ion mobility mass spectrometry for ‘small molecule’ ion mobility collision cross-sections?
,”
Analyst
14
,
6814
6823
(
2015
).
25.
N. L.
Zakharova
,
C. L.
Crawford
,
B. C.
Hauck
,
J. K.
Quinton
,
W. F.
Seims
,
H. H.
Hill
, and
A. E.
Clark
, “
An assessment of computational methods for obtaining structural information of moderately flexible biomolecules from ion mobility spectrometry
,”
J. Am. Soc. Mass Spectrom.
23
,
792
805
(
2012
).
26.
J.
Boschmans
,
S.
Jacobs
,
J. P.
Williams
,
M.
Palmer
,
K.
Richardson
,
K.
Giles
,
C.
Lapthorn
,
W. A.
Herrebout
,
F.
Lemiere
, and
F.
Sobott
, “
Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers
,”
Analyst
141
,
4044
4054
(
2016
).
27.
C.
Lapthorn
,
T. J.
Dines
,
B. Z.
Chowdhry
,
G. L.
Perkins
, and
F. S.
Pullen
, “
Can ion mobility mass spectrometry and density functional theory help elucidate protonation sites in ‘small’ molecules?
,”
Rapid Commun. Mass Spectrom.
27
,
2399
2410
(
2013
).
28.
F.
Furche
,
R.
Ahlrichs
,
P.
Weis
,
C.
Jacob
,
S.
Gilb
,
T.
Bierweiler
, and
M. M.
Kappes
, “
The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations
,”
J. Chem. Phys.
117
,
6982
6990
(
2002
).
29.
S.
Gilb
,
P.
Weis
,
F.
Furche
,
R.
Ahlrichs
, and
M. M.
Kappes
, “
Structures of small gold cluster cations (Au+n, n < 14): Ion mobility measurements versus density functional calculations
,”
J. Chem. Phys.
116
,
4094
4101
(
2002
).
30.
H.
Ouyang
,
C.
Larriba-Andaluz
,
D. R.
Oberreit
, and
C. J.
Hogan
, “
The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry
,”
J. Am. Soc. Mass Spectrom.
24
,
1833
1847
(
2013
).
31.
I.
Campuzano
,
M. F.
Bush
,
C. V.
Robinson
,
C.
Beaumont
,
K.
Richardson
,
H.
Kim
, and
H. I.
Kim
, “
Structural characterization of drug-like compounds by ion mobility mass spectrometry: Comparison of theoretical and experimentally derived nitrogen collision cross sections
,”
Anal. Chem.
84
,
1026
1033
(
2012
).
32.
I.
Czerwinska
,
J.
Far
,
C.
Kune
,
C.
Larriba-Andaluz
,
L.
Delaude
, and
E.
De Pauw
, “
Structural analysis of ruthenium-arene complexes using ion mobility mass spectrometry, collision-induced dissociation, and DFT
,”
Dalton Trans.
45
,
6361
6370
(
2016
).
33.
P.
Benigni
,
J. D.
DeBord
,
C. J.
Thompson
,
P.
Gardinali
, and
F.
Fernandez-Lima
, “
Increasing polyaromatic hydrocarbon (PAH) molecular coverage during fossil oil analysis by combining gas chromatography and atmospheric-pressure laser ionization fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)
,”
Energy Fuel
30
,
196
203
(
2016
).
34.
C. K.
Siu
,
Y. Z.
Guo
,
I. S.
Saminathan
,
A. C.
Hopkinson
, and
K. W. M.
Siu
, “
Optimization of parameters used in algorithms of ion-mobility calculation for conformational analyses
,”
J. Phys. Chem. B
114
,
1204
1212
(
2010
).
35.
J. W.
Lee
,
K. L.
Davidson
,
M. F.
Bush
, and
H. I.
Kim
, “
Collision cross sections and ion structures: Development of a general calculation method via high-quality ion mobility measurements and theoretical modeling
,”
Analyst
142
,
4289
4298
(
2017
).
36.
T. W.
Knapman
,
J. T.
Berryman
,
I.
Campuzano
,
S. A.
Harris
, and
A. E.
Ashcroft
, “
Considerations in experimental and theoretical collision cross-section measurements of small molecules using travelling wave ion mobility spectrometry-mass spectrometry
,”
Int. J. Mass Spectrom.
298
,
17
23
(
2010
).
37.
A. A.
Shvartsburg
,
G. C.
Schatz
, and
M. F.
Jarrold
, “
Mobilities of carbon cluster ions: Critical importance of the molecular attractive potential
,”
J. Chem. Phys.
108
,
2416
2423
(
1998
).
38.
P. M.
Lalli
,
Y. E.
Corilo
,
M.
Fasciotti
,
M. F.
Riccio
,
G. F.
Sa
,
R. J.
Daroda
,
G. H.
Souza
,
M.
McCullagh
,
M. D.
Bartberger
, and
M. N.
Eberlin
, “
Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: Investigating the effects of polarizable drift gases and ionic charge distribution
,”
J. Mass Spectrom.
48
,
989
997
(
2013
).
39.
C.
Larriba-Andaluz
,
M.
Nahin
, and
V.
Shrivastav
, “
A contribution to the amaranthine quarrel between true and average electrical mobility in the free molecular regime
,”
Aerosol Sci. Technol.
51
,
887
895
(
2017
).
40.
V.
Shrivastav
,
M.
Nahin
,
C. J.
Hogan
, and
C.
Larriba-Andaluz
, “
Benchmark comparison for a multi-processing ion mobility calculator in the free molecular regime
,”
J. Am. Soc. Mass Spectrom.
28
,
1540
1551
(
2017
).
41.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
, “
The performance of the Becke-Lee-Yang-Parr (B-Lyp) density functional theory with various basis-sets
,”
Chem. Phys. Lett.
197
,
499
505
(
1992
).
42.
A. D.
Becke
, “
A new mixing of Hartree-Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
43.
J. P.
Perdew
,
M.
Emzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
44.
F.
Cuadros
,
I.
Cachadina
, and
W.
Ahumada
, “
Determination of Lennard-Jones interaction parameters using a new procedure
,”
Mol. Eng.
6
,
319
325
(
1996
).
45.
R. W.
Zwanzig
, “
High-temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
,
1420
1426
(
1954
).
46.
D.
Berthelot
, “
Sur le mélange des gaz
,”
Comput. Rendus
126
,
1703
1706
(
1898
).
47.
H.
Lorentz
, “
Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase
,”
Ann. Phys.
248
,
127
136
(
1881
).

Supplementary Material

You do not currently have access to this content.