Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant–product and product–product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.

1.
M. V.
Smoluchowski
,
Z. Phys. Chem.
92
,
129
(
1917
).
2.
P.
Debye
,
Trans. Electrochem. Soc.
82
,
265
(
1942
).
3.
F. C.
Collins
and
G. E.
Kimball
,
J. Colloid Sci.
4
,
425
(
1949
).
4.
D. F.
Calef
and
J. M.
Deutch
,
Annu. Rev. Phys. Chem.
34
,
493
(
1983
).
5.
O. G.
Berg
and
P. H.
von Hippel
,
Annu. Rev. Biophys. Biophys. Chem.
14
,
131
(
1985
).
6.
S. A.
Rice
,
Diffusion-Limited Reactions
(
Elsevier
,
Amsterdam
,
1985
).
7.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
8.
H.-X.
Zhou
,
G.
Rivas
, and
A. P.
Minton
,
Annu. Rev. Biophys.
37
,
375
(
2008
).
9.
F.
Höfling
and
T.
Franosch
,
Rep. Prog. Phys.
76
,
046602
(
2013
).
10.
J.
Dzubiella
and
J. A.
McCammon
,
J. Chem. Phys.
122
,
184902
(
2005
).
11.
J.
Sun
and
H.
Weinstein
,
J. Chem. Phys.
127
,
155105
(
2007
).
12.
Y. C.
Zhou
,
B.
Lu
,
G. A.
Huber
,
M. J.
Holst
, and
J. A.
McCammon
,
J. Phys. Chem. B
112
,
270
(
2008
).
13.
D.
Ridgway
,
G.
Broderick
,
A.
Lopez-Campistrous
,
M.
Ruáini
,
P.
Winter
,
M.
Hamilton
,
P.
Boulanger
,
A.
Kovalenko
, and
M. J.
Ellison
,
Biophys. J.
94
,
3748
(
2008
).
14.
J. S.
Kim
and
A.
Yethiraj
,
Biophys. J.
96
,
1333
(
2009
).
15.
J. S.
Kim
and
A.
Yethiraj
,
Biophys. J.
98
,
951
(
2010
).
16.
N.
Dorsaz
,
C.
De Michele
,
F.
Piazza
,
P.
De Los Rios
, and
G.
Foffi
,
Phys. Rev. Lett.
105
,
120601
(
2010
).
17.
A.
Zaccone
,
N.
Dorsaz
,
F.
Piazza
,
C.
De Michele
,
M.
Morbidelli
, and
G.
Foffi
,
J. Phys. Chem. B
115
,
7383
(
2011
).
18.
A.
Zaccone
and
E. M.
Terentjev
,
Phys. Rev. E
85
,
061202
(
2012
).
19.
F.
Piazza
,
N.
Dorsaz
,
C. D.
Michele
,
P. D. L.
Rios
, and
G.
Foffi
,
J. Phys.: Condens. Matter
25
,
375104
(
2013
).
20.
C.
Eun
,
P. M.
Kekenes-Huskey
, and
J. A.
McCammon
,
J. Chem. Phys.
139
,
044117
(
2013
).
21.
P. M.
Kekenes-Huskey
,
C.
Eun
, and
J. A.
McCammon
,
J. Chem. Phys.
143
,
094103
(
2015
).
22.
P. M.
Kekenes-Huskey
,
C. E.
Scott
, and
S.
Atalay
,
J. Phys. Chem. B
120
,
8696
(
2016
).
23.
A. M.
Berezhkovskii
and
A.
Szabo
,
J. Phys. Chem. B
120
,
5998
(
2016
).
24.
C.
Antoine
and
J.
Talbot
,
Phys. Rev. E
93
,
062120
(
2016
).
25.
R.
Samson
and
J. M.
Deutch
,
J. Chem. Phys.
68
,
285
(
1978
).
26.
R. A.
Alberty
and
G. G.
Hammes
,
J. Phys. Chem.
62
,
154
(
1958
).
27.
K.-C.
Chou
and
S.-P.
Jiang
,
Sci. Sin.
17
,
664
(
1974
), available at http://engine.scichina.com/publisher/scp/journal/Math%20A0/17/5/10.1360/ya1974-17-5-664?slug=full%20text.
28.
V.
Henri
,
C. R. Hebd. Seances Acad. Sci.
135
,
216
(
1902
).
29.
J. C.
Gerhart
and
A. B.
Pardee
,
J. Biol. Chem.
237
,
891
(
1962
).
30.
J.-M.
Engasser
and
C.
Horvath
,
Biochemistry
13
,
3849
(
1974
).
31.
A.
Cornish-Bowden
,
FEBS Lett.
587
,
2725
(
2013
).
32.
J.
March
,
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
(
Wiley
,
New York
,
1985
).
33.
R. D.
Martin
and
P. R.
Unwin
,
J. Electroanal. Chem.
439
,
123
(
1997
).
34.
R. D.
Martin
and
P. R.
Unwin
,
Anal. Chem.
70
,
276
(
1998
).
35.
C.
Amatore
,
C.
Sella
, and
L.
Thouin
,
J. Phys. Chem. B
106
,
11565
(
2002
).
36.
W.
Hyk
,
A.
Nowicka
, and
Z.
Stojek
,
Anal. Chem.
74
,
149
(
2002
).
37.
W.
Hyk
,
A.
Nowicka
, and
Z.
Stojek
,
Anal. Chem.
74
,
4805
(
2002
).
38.
D.
Mampallil
,
K.
Mathwig
,
S.
Kang
, and
S. G.
Lemay
,
Anal. Chem.
85
,
6053
(
2013
).
39.
D.
Astruc
,
F.
Lu
, and
J. R.
Aranzaes
,
Angew. Chem., Int. Ed.
44
,
7852
(
2005
).
40.
P.
Hervés
,
M.
Pérez-Lorenzo
,
L. M.
Liz-Marzán
,
J.
Dzubiella
,
Y.
Lu
, and
M.
Ballauff
,
Chem. Soc. Rev.
41
,
5577
(
2012
).
41.
S.
Wu
,
J.
Dzubiella
,
J.
Kaiser
,
M.
Drechsler
,
X.
Guo
,
M.
Ballauff
, and
Y.
Lu
,
Angew. Chem., Int. Ed.
51
,
2229
(
2012
).
42.
S.
Angioletti-Uberti
,
Y.
Lu
,
M.
Ballauff
, and
J.
Dzubiella
,
J. Phys. Chem. C
119
,
15723
(
2015
).
43.
M.
Galanti
,
D.
Fanelli
,
S.
Angioletti-Uberti
,
M.
Ballauff
,
J.
Dzubiella
, and
F.
Piazza
,
Phys. Chem. Chem. Phys.
18
,
20758
(
2016
).
44.
R.
Roa
,
W. K.
Kim
,
M.
Kanduč
,
J.
Dzubiella
, and
S.
Angioletti-Uberti
,
ACS Catal.
7
,
5604
(
2017
).
45.
U. M. B.
Marconi
and
P.
Tarazona
,
J. Phys.: Condens. Matter
12
,
A413
(
2000
).
46.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
London
,
2006
).
47.
Wolfram Research, Inc.
, Mathematica, version 10.0,
Champaign, IL
,
2014
.
You do not currently have access to this content.