Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter dm and is compared with that from scaling laws for fractal-like agglomerates. The ratio dm/dg of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant dm and mean dp, the agglomerate settling rate, us, increases with increasing PP geometric standard deviation σp,g (polydispersity). A linear relationship between us and agglomerate mass to dm ratio, m/dm, is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the us of agglomerates consisting of polydisperse PPs is then derived, us=1ρfρpg3πμmdm (ρf is the density of the fluid, ρp is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs underestimates us by a fraction depending on σp,g and agglomerate mass mobility exponent. Simulations are in excellent agreement with deposition rate measurements of fumed SiO2 agglomerates in water.

1.
J. M.
Cohen
,
G. M.
DeLoid
, and
P.
Demokritou
,
Nanomedicine
10
,
3015
(
2015
).
2.
M.
Baalousha
,
G.
Cornelis
,
T. A. J.
Kuhlbusch
,
I.
Lynch
,
C.
Nickel
,
W.
Peijnenburg
, and
N. W.
van den Brink
,
Environ. Sci.: Nano
3
,
323
(
2016
).
3.
A.
Ghadimi
,
R.
Saidur
, and
H. S. C.
Metselaar
,
Int. J. Heat Mass Transfer
54
,
4051
(
2011
).
4.
R.
Saidur
,
K. Y.
Leong
, and
H. A.
Mohammad
,
Renewable Sustainable Energy Rev.
15
,
1646
(
2011
).
5.
R.
Liu
,
H. H.
Liu
,
Z.
Ji
,
C. H.
Chang
,
T.
Xia
,
A. E.
Nel
, and
Y.
Cohen
,
ACS Nano
9
,
9303
(
2015
).
6.
A.
Spyrogianni
,
I. K.
Herrmann
,
M. S.
Lucas
,
J. C.
Leroux
, and
G. A.
Sotiriou
,
Nanomedicine
11
,
2483
(
2016
).
7.
S.
Witharana
,
C.
Hodges
,
D.
Xu
,
X.
Lai
, and
Y.
Ding
,
J. Nanoparticle Res.
14
,
851
(
2012
).
8.
H.
Zhang
,
Z.
Ji
,
T.
Xia
,
H.
Meng
,
C.
Low-Kam
,
R.
Liu
,
S.
Pokhrel
,
S.
Lin
,
X.
Wang
,
Y.-P.
Liao
,
M.
Wang
,
L.
Li
,
R.
Rallo
,
R.
Damoiseaux
,
D.
Telesca
,
L.
Mädler
,
Y.
Cohen
,
J. I.
Zink
, and
A. E.
Nel
,
ACS Nano
6
,
4349
(
2012
).
9.
L.
Jiang
,
L.
Gao
, and
J.
Sun
,
J. Colloid Interface Sci.
260
,
89
(
2003
).
10.
P. M.
Hinderliter
,
K. R.
Minard
,
G.
Orr
,
W. B.
Chrisler
,
B. D.
Thrall
,
J. G.
Pounds
, and
J. G.
Teeguarden
,
Part. Fibre Toxicol.
7
,
36
(
2010
).
11.
L.
Rodriguez-Lorenzo
,
B.
Rothen-Rutishauser
,
A.
Petri-Fink
, and
S.
Balog
,
Part. Part. Syst. Charact.
32
,
321
(
2015
).
12.
G. M.
DeLoid
,
J. M.
Cohen
,
G.
Pyrgiotakis
,
S. V.
Pirela
,
A.
Pal
,
J.
Liu
,
J.
Srebric
, and
P.
Demokritou
,
Part. Fibre Toxicol.
12
,
32
(
2015
).
13.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, 2nd ed. (
John Wiley & Sons
,
New York
,
2002
).
14.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison Wesley
,
San Francisco
,
2001
).
15.
H. C.
Öttinger
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
Berlin
,
1996
).
16.
S. N.
Naess
,
H. M.
Adland
,
A.
Mikkelsen
, and
A.
Elgsaeter
,
Phys. A: Stat. Mech. Appl.
294
,
323
(
2001
).
17.
P.
Mereghetti
and
R. C.
Wade
,
J. Phys. Chem. B
116
,
8523
(
2012
).
18.
H. C.
Öttinger
,
Phys. Rev. E
50
,
2696
(
1994
).
19.
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
,
J. Rheol.
44
,
713
(
2000
).
20.
N.
Hoda
and
S.
Kumar
,
J. Chem. Phys.
127
,
234902
(
2007
).
21.
A.
Saadat
and
B.
Khomami
,
J. Chem. Phys.
140
,
184903
(
2014
).
22.
I. M.
Ilie
,
W. J.
Briels
, and
W. K.
Den Otter
,
J. Chem. Phys.
142
,
114103
(
2015
).
23.
S.
Delong
,
F. B.
Usabiaga
, and
A.
Donev
,
J. Chem. Phys.
143
,
144107
(
2015
).
24.
F. B.
Usabiaga
,
B.
Delmotte
, and
A.
Donev
,
J. Chem. Phys.
146
,
134104
(
2017
).
25.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
26.
H.
Yamakawa
,
J. Chem. Phys.
53
,
436
(
1970
).
27.
A. M.
Fiore
,
F. B.
Usabiaga
,
A.
Donev
, and
J. W.
Swan
,
J. Chem. Phys.
146
,
124116
(
2017
).
28.
A.
Mikkelsen
,
K. D.
Knudsen
, and
A.
Elgsaeter
,
Phys. A: Stat. Mech. Appl.
253
,
66
(
1998
).
29.
T. R.
Evensen
,
S. N.
Naess
, and
A.
Elgsaeter
,
Macromol. Theory Simul.
17
,
403
(
2008
).
30.
T. R.
Evensen
,
S. N.
Naess
, and
A.
Elgsaeter
,
Macromol. Theory Simul.
17
,
121
(
2008
).
31.
I. M.
Ilie
,
W. K.
den Otter
, and
W. J.
Briels
,
J. Chem. Phys.
141
,
065101
(
2014
).
32.
J. G.
de la Torre
,
G.
del Rio Echenique
, and
A.
Ortega
,
J. Phys. Chem. B
111
,
955
(
2007
).
33.
J. G.
de le Torre
,
S.
Navarro
,
M. C.
Lopez Martinez
,
F. G.
Diaz
, and
J. J.
Lopez Cascales
,
Biophys. J.
67
,
530
(
1994
).
34.
J. G.
Kirkwood
and
J.
Riseman
,
J. Chem. Phys.
16
,
565
(
1948
).
35.
J. G.
de La Torre
and
V. A.
Bloomfield
,
Biopolymers
16
,
1747
(
1977
).
36.
The Colloid Chemistry of Silica: Developed from a Symposium Sponsored by the Division of Colloid and Surface Chemistry
, edited by
H. E.
Bergna
(
American Chemical Society
,
Washington
,
1994
), pp.
1
47
.
37.
L.
Di Cristo
,
D.
Movia
,
M. G.
Bianchi
,
M.
Allegri
,
B. M.
Mohamed
,
A. P.
Bell
,
C.
Moore
,
S.
Pinelli
,
K.
Rasmussen
,
J.
Riego-Sintes
,
A.
Prina-Mello
,
O.
Bussolati
, and
E.
Bergamaschi
,
Toxicol. Sci.
150
,
40
(
2016
).
38.
E.
Goudeli
,
M. L.
Eggersdorfer
, and
S. E.
Pratsinis
,
Langmuir
31
,
1320
(
2015
).
39.
J. E.
Martin
,
D. W.
Schaefer
, and
A. J.
Hurd
,
Phys. Rev. A
33
,
3540
(
1986
).
40.
D. N.
Theodorou
and
U. W.
Suter
,
Macromolecules
18
,
1206
(
1985
).
41.
C. M.
Sorensen
,
Aerosol Sci. Technol.
45
,
765
(
2011
).
42.
R.
Dastanpour
and
S. N.
Rogak
,
J. Aerosol Sci.
94
,
22
(
2016
).
43.
L. K.
Limbach
,
Y.
Li
,
R. N.
Grass
,
T. J.
Brunner
,
M. A.
Hintermann
,
M.
Muller
,
D.
Gunther
, and
W. J.
Stark
,
Environ. Sci. Technol.
39
,
9370
(
2005
).
44.
A.
Spyrogianni
,
G. A.
Sotiriou
,
D.
Brambilla
,
J.-C.
Leroux
, and
S. E.
Pratsinis
,
J. Aerosol Sci.
108
,
56
(
2017
).
45.
S. N.
Naess
and
A.
Elgsaeter
,
Macromol. Theory Simul.
13
,
419
(
2004
).
46.
S. N.
Naess
and
A.
Elgsaeter
,
Macromol. Theory Simul.
14
,
300
(
2005
).
47.
C. P.
Royall
,
J.
Dzubiella
,
M.
Schmidt
, and
A.
van Blaaderen
,
Phys. Rev. Lett.
98
,
188304-1
(
2007
).
48.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
49.
G.
Kasper
,
T.
Niida
, and
M.
Yang
,
J. Aerosol Sci.
16
,
535
(
1985
).
50.
J. G.
de la Torre
and
V. A.
Bloomfield
,
Q. Rev. Biophys.
14
,
81
(
1981
).
51.
J. G.
de la Torre
,
Dynamic Process of Biomolecular Assemblies
, edited by
S. E.
Harding
and
A. J.
Rowe
(
The Royal Society of Chemistry
,
Cambridge
,
1989
), pp.
3
31
.
52.
E.
Goudeli
,
M. L.
Eggersdorfer
, and
S. E.
Pratsinis
,
Langmuir
32
,
9276
(
2016
).
53.
S. R.
Forrest
and
T. A.
Witten
,
J. Phys. A: Math. Gen.
12
,
L109
(
1979
).
54.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
2009
).
55.
M. L.
Eggersdorfer
,
D.
Kadau
,
H. J.
Herrmann
, and
S. E.
Pratsinis
,
J. Aerosol Sci.
46
,
7
(
2012
).
56.
W. C.
Hinds
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
, 2nd ed. (
Wiley-Interscience
,
New York
,
1999
).
57.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume I: Fluid Mechanics
, 2nd ed. (
John Wiley & Sons
,
New York
,
1987
).
58.
J.
Corson
,
G. W.
Mulholland
, and
M. R.
Zachariah
,
Aerosol Sci. Technol.
51
,
766
(
2017
).
59.
J.
Corson
,
G. W.
Mulholland
, and
M. R.
Zachariah
,
Phys. Rev. E
95
,
013103-1
(
2017
).
60.
P. C.
Hiemenz
and
R.
Rajagopalan
,
Principles of Colloid and Surface Chemistry
, 3rd ed. (
Marcel Dekker
,
New York
,
1997
).
61.
S. N.
Rogak
and
R. C.
Flagan
,
J. Colloid Interface Sci.
134
,
206
(
1990
).
62.
S. K.
Friedlander
,
Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics
, 2nd ed. (
Oxford University Press
,
New York, Oxford
,
2000
).
63.
C.
Binder
,
M. A. J.
Hartig
, and
W.
Peukert
,
J. Colloid Interface Sci.
331
,
243
(
2009
).
64.
D. W.
Schaefer
and
A. J.
Hurd
,
Aerosol Sci. Technol.
12
,
876
(
1990
).
65.
G.
Beaucage
,
H. K.
Kammler
, and
S. E.
Pratsinis
,
J. Appl. Crystallogr.
37
,
523
(
2004
).
66.
A.
Camenzind
,
T.
Schweizer
,
M.
Sztucki
, and
S. E.
Pratsinis
,
Polymer
51
,
1796
(
2010
).
67.
R.
Wengeler
,
A.
Teleki
,
M.
Vetter
,
S. E.
Pratsinis
, and
H.
Nirschl
,
Langmuir
22
,
4928
(
2006
).
68.
T.
Phenrat
,
N.
Saleh
,
K.
Sirk
,
R. D.
Tilton
, and
G. V.
Lowry
,
Environ. Sci. Technol.
41
,
284
(
2007
).
69.
P. J.
Vikesland
,
R. L.
Rebodos
,
J. Y.
Bottero
,
J.
Rose
, and
A.
Masion
,
Environ. Sci.: Nano
3
,
567
(
2016
).
70.
G. D.
Ulrich
,
Combust. Sci. Technol.
4
,
47
(
1971
).
71.
M. L.
Eggersdorfer
and
S. E.
Pratsinis
,
Adv. Powder Technol.
25
,
71
(
2014
).
72.
K. A.
Kusters
,
S. E.
Pratsinis
,
S. G.
Thoma
, and
D. M.
Smith
,
Chem. Eng. Sci.
48
,
4119
(
1993
).
73.
E.
Goudeli
,
A. J.
Gröhn
, and
S. E.
Pratsinis
,
Aerosol Sci. Technol.
50
,
591
(
2016
).
74.
A. B.
Burd
and
G. A.
Jackson
,
Environ. Sci. Technol.
36
,
323
(
2002
).
75.
T. L.
Moore
,
L.
Rodriguez-Lorenzo
,
V.
Hirsch
,
S.
Balog
,
D.
Urban
,
C.
Jud
,
B.
Rothen-Rutishauser
,
M.
Lattuada
, and
A.
Petri-Fink
,
Chem. Soc. Rev.
44
,
6287
(
2015
).

Supplementary Material

You do not currently have access to this content.