Natural light harvesting systems exploit electronic coupling of identical chromophores to generate efficient and robust excitation transfer and conversion. Dark states created by strong coupling between chromophores in the antenna structure can significantly reduce radiative recombination and enhance energy conversion efficiency. Increasing the number of the chromophores increases the number of dark states and the associated enhanced energy conversion efficiency yet also delocalizes excitations away from the trapping center and reduces the energy conversion rate. Therefore, a competition between dark state protection and delocalization must be considered when designing the optimal size of a light harvesting system. In this study, we explore the two competing mechanisms in a chain-structured antenna and show that dark state protection is the dominant mechanism, with an intriguing dependence on the parity of the number of chromophores. This dependence is linked to the exciton distribution among eigenstates, which is strongly affected by the coupling strength between chromophores and the temperature. Combining these findings, we propose that increasing the coupling strength between the chromophores can significantly increase the power output of the light harvesting system.

1.
A.
Ishizaki
and
G. R.
Fleming
,
Annu. Rev. Condens. Matter Phys.
3
,
333
(
2012
).
2.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mancal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
(
7137
),
782
786
(
2007
).
3.
H.
Lee
,
Y. C.
Cheng
, and
G. R.
Fleming
,
Science
316
(
5830
),
1462
1465
(
2007
).
4.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
(
17
),
174106
(
2008
).
5.
S.
Mukamel
,
J. Chem. Phys.
132
(
24
),
241105
(
2010
).
6.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. A
113
(
50
),
13825
13838
(
2009
).
7.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
(
10
),
105106
(
2009
).
8.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature
463
(
7281
),
644
U669
(
2010
).
9.
E.
Harel
,
J. Chem. Phys.
136
(
17
),
174104
(
2012
).
10.
S.
Jang
and
Y.-C.
Cheng
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
(
1
),
84
104
(
2013
).
11.
X.
Li
,
R. M.
Parrish
,
F.
Liu
,
S. I. L.
Kokkila Schumacher
, and
T. J.
Martínez
,
J. Chem. Theory Comput.
13
(
8
),
3493
3504
(
2017
).
12.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
13.
M. O.
Scully
,
Phys. Rev. Lett.
104
(
20
),
207701
(
2010
).
14.
M. O.
Scully
,
K. R.
Chapin
,
K. E.
Dorfman
,
M. B.
Kim
, and
A.
Svidzinsky
,
Proc. Natl. Acad. Sci. U. S. A.
108
(
37
),
15097
15100
(
2011
).
15.
C.
Creatore
,
M. A.
Parker
,
S.
Emmott
, and
A. W.
Chin
,
Phys. Rev. Lett.
111
(
25
),
253601
(
2013
).
16.
Y.
Zhang
,
S.
Oh
,
F. H.
Alharbi
,
G. S.
Engel
, and
S.
Kais
,
Phys. Chem. Chem. Phys.
17
(
8
),
5743
5750
(
2015
).
17.
K. D. B.
Higgins
,
B. W.
Lovett
, and
E. M.
Gauger
,
J. Phys. Chem. C
121
(
38
),
20714
20719
(
2017
).
18.
Y.
Zhang
,
A.
Wirthwein
,
F. H.
Alharbi
,
G. S.
Engel
, and
S.
Kais
,
Phys. Chem. Chem. Phys.
18
(
46
),
31845
31849
(
2016
).
19.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
184
(
4
),
1234
1240
(
2013
).
20.
K. E.
Dorfman
,
D. V.
Voronine
,
S.
Mukamel
, and
M. O.
Scully
,
Proc. Natl. Acad. Sci. U. S. A.
110
(
8
),
2746
2751
(
2013
).
21.
P. P.
Hofer
,
M.
Perarnau-Llobet
,
L. D. M.
Miranda
,
G.
Haack
,
R.
Silva
,
J. B.
Brask
, and
N.
Brunner
,
New J. Phys.
19
(
12
),
123037
(
2017
).
22.
A. S.
Trushechkin
and
I. V.
Volovich
,
Europhys. Lett.
113
(
3
),
30005
(
2016
).
You do not currently have access to this content.