A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed. Like B97-D, it is based on Becke’s power-series ansatz from 1997 and is explicitly parametrized by including the standard D3 semi-classical dispersion correction. The orbitals are expanded in a modified valence triple-zeta Gaussian basis set, which is available for all elements up to Rn. Remaining basis set errors are mostly absorbed in the modified B97 parametrization, while an established atom-pairwise short-range potential is applied to correct for the systematically too long bonds of main group elements which are typical for most semi-local density functionals. The new composite scheme (termed B97-3c) completes the hierarchy of “low-cost” electronic structure methods, which are all mainly free of basis set superposition error and account for most interactions in a physically sound and asymptotically correct manner. B97-3c yields excellent molecular and condensed phase geometries, similar to most hybrid functionals evaluated in a larger basis set expansion. Results on the comprehensive GMTKN55 energy database demonstrate its good performance for main group thermochemistry, kinetics, and non-covalent interactions, when compared to functionals of the same class. This also transfers to metal-organic reactions, which is a major area of applicability for semi-local functionals. B97-3c can be routinely applied to hundreds of atoms on a single processor and we suggest it as a robust computational tool, in particular, for more strongly correlated systems where our previously published “3c” schemes might be problematic.

1.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
2.
3.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
4.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
5.
N.
Mardirossian
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
16
,
9904
(
2014
).
6.
Y.
Wang
,
X.
Jin
,
H. S.
Yu
,
D. G.
Truhlar
, and
X.
He
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
8487
(
2017
).
7.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
,
Chem. Rev.
116
,
5105
(
2016
).
8.
J.
Klimeš
and
A.
Michaelides
,
J. Chem. Phys.
137
,
120901
(
2012
).
10.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
11.
R.
Paverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc., A
372
,
20120476
(
2013
).
12.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
13.
N.
Mardirossian
,
J. A.
Parkhill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
13
,
19325
(
2011
).
14.
N.
Mardirossian
and
M.
Head-Gordon
,
Mol. Phys.
115
,
2315
(
2017
).
15.
S.
Grimme
,
G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
,
J. Chem. Phys.
143
,
054107
(
2015
).
16.
J.
Witte
,
M.
Goldey
,
J. B.
Neaton
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
11
,
1481
(
2015
).
17.
M.
Piccardo
,
E.
Penocchio
,
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Phys. Chem. A
119
,
2058
(
2015
).
18.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
New York
,
2001
).
19.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
024109
(
2016
).
20.
S. A.
Maurer
,
D. S.
Lambrecht
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
014101
(
2013
).
21.
M.
Schütz
,
O.
Masur
, and
D.
Usvyat
,
J. Chem. Phys.
140
,
244107
(
2014
).
22.
A.
Zen
,
S.
Sorella
,
M. J.
Gillan
,
A.
Michaelides
, and
D.
Alfè
,
Phys. Rev. B
93
,
241118(R)
(
2016
).
23.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
24.
A.
Ambrosetti
,
D.
Alfè
,
R. A.
DiStasio
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
5
,
849
(
2014
).
25.
J.
Yang
,
W.
Hu
,
D.
Usvyat
,
D.
Matthews
,
M.
Schütz
, and
G. K.-L.
Chan
,
Science
345
,
640
(
2014
).
26.
A.
Zen
,
J. G.
Brandenburg
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
, and
A.
Michaelides
, “Fast and accurate quantum Monte Carlo for molecular crystals,”
Proc. Natl. Acad. Sci. U. S. A.
(in press).
27.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
126
,
084108
(
2007
).
28.
E.
Paulechka
and
A.
Kazakov
,
J. Phys. Chem. A
121
,
4379
(
2017
).
29.
R.
Sure
,
J.
Antony
, and
S.
Grimme
,
J. Phys. Chem. B
118
,
3431
(
2014
).
30.
J.
Yin
,
N. M.
Henriksen
,
D. R.
Slochower
,
M. R.
Shirts
,
M. W.
Chiu
,
D. L.
Mobley
, and
M. K.
Gilson
,
J. Comput.-Aided Mol. Des.
31
,
1
(
2017
).
31.
A. M.
Reilly
 et al.,
Acta Crystallogr., Sect. B
72
,
439
(
2016
).
32.
S. L.
Price
and
S. M.
Reutzel-Edens
,
Drug Discovery Today
21
,
912
(
2016
).
33.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
(
2013
).
34.
J. G.
Brandenburg
,
E.
Caldeweyher
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
18
,
15519
(
2016
).
35.
J.
Hostaš
and
J.
Řezáč
,
J. Chem. Theory Comput.
13
,
3575
(
2017
).
36.
J.
Witte
,
J. B.
Neaton
, and
M.
Head-Gordon
,
J. Chem. Phys.
146
,
234105
(
2017
).
37.
A.
Otero-de-la Roza
and
G. A.
DiLabio
,
J. Chem. Theory Comput.
13
,
3505
(
2017
).
38.
K.
Miyamoto
,
T. F.
Miller
, and
F. R.
Manby
,
J. Chem. Theory Comput.
12
,
5811
(
2016
).
39.
R.
Sure
,
J. G.
Brandenburg
, and
S.
Grimme
,
ChemistryOpen
5
,
94
(
2016
).
40.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
41.
H.
Kruse
and
S.
Grimme
,
J. Chem. Phys.
136
,
154101
(
2012
).
42.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
134114
(
2013
).
43.
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
5
,
2619
(
2009
).
44.
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martinez
,
J. Chem. Theory Comput.
7
,
949
(
2011
).
45.
S.
Ehrlich
,
A. H.
Göller
, and
S.
Grimme
,
ChemPhysChem
18
,
898
(
2017
).
46.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
47.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
48.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
49.
H. L.
Schmider
and
A. D.
Becke
,
J. Chem. Phys.
108
,
9624
(
1998
).
50.
A. D.
Boese
,
N. L.
Doltsinis
,
N. C.
Handy
, and
M.
Sprik
,
J. Chem. Phys.
112
,
1670
(
2000
).
51.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
123
,
121103
(
2005
).
52.
A. D.
Boese
and
J. M. L.
Martin
,
J. Chem. Phys.
121
,
3405
(
2004
).
53.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
54.
B. M.
Axilrod
and
E.
Teller
,
J. Chem. Phys.
11
,
299
(
1943
).
55.
Y.
Muto
,
Proc. Phys.-Math. Soc. Jpn.
17
,
629
(
1943
).
56.
R. A.
DiStasio
,
V. V.
Gobre
, and
A.
Tkatchenko
,
J. Phys.: Condens. Matter
26
,
213202
(
2014
).
57.
J. F.
Dobson
,
Int. J. Quantum Chem.
114
,
1157
(
2014
).
58.
M. R.
Kennedy
,
A. R.
McDonald
,
A. E.
DePrince
,
M. S.
Marshall
,
R.
Podeszwa
, and
C. D.
Sherrill
,
J. Chem. Phys.
140
,
121104
(
2014
).
59.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
60.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
123
,
024101
(
2005
).
61.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
124
,
174104
(
2006
).
62.
J. G.
Brandenburg
,
J. E.
Bates
,
J.
Sun
, and
J. P.
Perdew
,
Phys. Rev. B
94
,
115144
(
2016
).
63.
K.
Levenberg
,
Q. Appl. Math.
2
,
164
(
1944
).
64.
D. W.
Marquardt
,
SIAM J. Appl. Math.
11
,
431
(
1963
).
65.
L.
Goerigk
,
A.
Hansen
,
C. A.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
19
,
32184
(
2017
).
66.
See https://www.chemie.uni-bonn.de/pctc/mulliken-center/software for the SRB correction within the gCP standalone code.
67.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
68.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
69.
TURBOMOLE V7.0 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
70.
R.
Dovesi
,
R.
Orlando
,
A.
Erba
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
S.
Casassa
,
L.
Maschio
,
M.
Ferrabone
,
M.
De La Pierre
,
P.
D’Arco
,
Y.
Noël
,
M.
Causà
,
M.
Rérat
, and
B.
Kirtman
,
Int. J. Quantum Chem.
114
,
1287
(
2014
).
71.
The implementation was done by Dr. Eva Perlt from the University of Bonn. A slightly different basis set is employed; see
E.
Perlt
,
P.
Ray
,
A.
Hansen
,
F.
Malberg
,
S.
Grimme
, and
B.
Kirchner
, “Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies,”
J. Chem. Phys.
(submitted).
72.
The CP2K Developers Group
,
2015
, CP2K is freely available from http://www.cp2k.org/.
73.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
74.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
75.
B. I.
Dunlap
,
W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
76.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
77.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
78.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
79.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
80.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
81.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
82.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
83.
E.
Brémond
,
M.
Savarese
,
N. Q.
Su
,
A. J.
Pérez-Jiménez
,
X.
Xu
,
J. C.
Sancho-García
, and
C.
Adamo
,
J. Chem. Theory Comput.
12
,
459
(
2016
).
84.
J. A.
Pople
,
Modern Theoretical Chemistry
(
Plenum
,
New York
,
1976
), Vol. 4.
85.

Note, however, that SCAN-D3/def2-QZVP4,62 has an even smaller MAD for the CCse21 bond lengths of 0.37 pm and yields a small average structure RMSD of 0.42 pm and is thus the most accurate standard (non-double-hybrid) functional for geometries of small semi-rigid molecules.

86.
M.
Bühl
and
H.
Kabrede
,
J. Chem. Theory Comput.
2
,
1282
(
2006
).
87.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
88.
S.
Grimme
and
M.
Steinmetz
,
Phys. Chem. Chem. Phys.
15
,
16031
(
2013
).
89.
T.
Risthaus
,
M.
Steinmetz
, and
S.
Grimme
,
J. Comput. Chem.
35
,
1509
(
2014
).
90.

On the other hand, both M06L and SCAN converge slow with respect to the single particle basis set and require large radial grid sizes.62 In practice, B97-3c is about 2 orders of magnitude faster as confirmed for a standard single-point energy of phenanthrene and [7]helicene. B97-3c is used in default settings (see Sec. III B), while M06L is evaluated with RI-J in a def2-QZVP basis set and increased gridsize (grid7, IntAcc = 33.5), i.e., with ≥400 radial grid points per atom in following the recommendation in Ref. 62. With these settings, a single-point calculation with M06L of phenanthrene and [7]helicene takes 01:45:46 and 09:42:35, respectively (hh:mm:ss).

91.
K.
Pernal
,
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
103
,
263201
(
2009
).
92.
É. D.
Murray
,
K.
Lee
, and
D. C.
Langreth
,
J. Chem. Theory Comput.
5
,
2754
(
2009
).
93.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
94.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
,
J. Chem. Theory Comput.
18
,
20905
(
2016
).
95.
R.
Sure
and
S.
Grimme
,
J. Chem. Theory Comput.
11
,
3785
(
2015
).
96.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
3364
(
2013
).
97.
T.
Risthaus
and
S.
Grimme
,
J. Chem. Theory Comput.
9
,
1580
(
2013
).
98.
H.
Kruse
,
A.
Mladek
,
K.
Gkionis
,
A.
Hansen
,
S.
Grimme
, and
J.
Sponer
,
J. Chem. Theory Comput.
11
,
4972
(
2015
).
99.
Y. A.
Aoto
,
A. P.
de Lima Batista
,
A.
Köhn
, and
A. G. S.
de Oliveira-Filho
,
J. Chem. Theory Comput.
13
,
5291
(
2017
).
100.
J. J.
Determan
,
K.
Poole
,
G.
Scalmani
,
M. J.
Frisch
,
B. G.
Janesko
, and
A. K.
Wilson
,
J. Chem. Theory Comput.
13
,
4907
(
2017
).
101.
C. J.
Cramer
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
11
,
10757
(
2009
).
102.
S.
Dohm
,
M.
Steinmetz
,
M. P.
Checinski
,
A.
Hansen
, and
S.
Grimme
, “Comprehensive thermochemical benchmark set of realistic metal organic reactions,”
J. Chem. Theory Comput.
(submitted).
103.
F.
Pavošević
,
C.
Peng
,
P.
Pinski
,
C.
Riplinger
,
F.
Neese
, and
E. F.
Valeev
,
J. Chem. Phys.
146
,
174108
(
2017
).
104.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
105.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
106.
A.
Hellweg
,
C.
Hättig
,
S.
Höfener
, and
W.
Klopper
,
Theor. Chem. Acc.
117
,
587
(
2007
).
107.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, Jr.
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
108.
A.
Pulido
,
L.
Chen
,
T.
Kaczorowski
,
D.
Holden
,
M. A.
Little
,
S. Y.
Chong
,
B. J.
Slater
,
D. P.
McMahon
,
B.
Bonillo
,
C. J.
Stackhouse
,
A.
Stephenson
,
C. M.
Kane
,
R.
Clowes
,
T.
Hasell
,
A. I.
Cooper
, and
G. M.
Day
,
Nature
543
,
657
(
2017
).
109.
A. J.
Cruz-Cabeza
,
S. M.
Reutzel-Edens
, and
J.
Bernstein
,
Chem. Soc. Rev.
44
,
8619
(
2015
).
110.
M. J.
Gillan
,
D.
Alfè
,
P. J.
Bygrave
,
C. R.
Taylor
, and
F. R.
Manby
,
J. Chem. Phys.
139
,
114101
(
2013
).
111.
S.
Wen
and
G. J. O.
Beran
,
J. Chem. Theory Comput.
7
,
3733
(
2011
).
112.
J. G.
Brandenburg
and
S.
Grimme
,
Acta Crystallogr., Sect. B
72
,
502
(
2016
).
113.
J. G.
Brandenburg
and
S.
Grimme
,
Top. Curr. Chem.
345
,
1
(
2014
).
114.
J. G.
Brandenburg
,
J.
Potticary
,
H. A.
Sparkes
,
S. L.
Price
, and
S. R.
Hall
,
J. Phys. Chem. Lett.
8
,
4319
(
2017
).
115.
M.
Cutini
,
B.
Civalleri
,
M.
Corno
,
R.
Orlando
,
J. G.
Brandenburg
,
L.
Maschio
, and
P.
Ugliengoa
,
J. Chem. Theory Comput.
12
,
3340
(
2016
).
116.
M.
Cutini
,
M.
Corno
, and
P.
Ugliengo
,
J. Chem. Theory Comput.
13
,
370
(
2017
).
117.
J. G.
Brandenburg
,
T.
Maas
, and
S.
Grimme
,
J. Chem. Phys.
142
,
124104
(
2015
).
118.
A.
Otero-de-la-Roza
and
E. R.
Johnson
,
J. Chem. Phys.
137
,
054103
(
2012
).
119.
A. M.
Reilly
and
A.
Tkatchenko
,
J. Chem. Phys.
139
,
024705
(
2013
).
120.
J. S.
Chickos
,
Netsu Sokutei
30
,
116
(
2003
).

Supplementary Material

You do not currently have access to this content.