In this paper, molecular dynamics is used to further gain insight into the mechanisms by which typical pharmaceutical excipients preserve the protein structure. More specifically, the water entrapment scenario will be analyzed, which states that excipients form a cage around the protein, entrapping and slowing water molecules. Human growth hormone will be used as a model protein, but the results obtained are generally applicable. We will show that water entrapment, as well as the other mechanisms of protein stabilization in the dried state proposed so far, may be related to the formation of a dense hydrogen bonding network between excipient molecules. We will also present a simple phenomenological model capable of explaining the behavior and stabilizing effect provided by typical cryo- and lyo-protectants. This model uses, as input data, molecular properties which can be easily evaluated. We will finally show that the model predictions compare fairly well with experimental data.

1.
G. B.
Strambini
and
E.
Gabellieri
,
Biophys. J.
70
,
971
(
1996
).
2.
M. J.
Pikal
, in
Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products
, edited by
L.
Rey
and
J. C.
May
(
Marcel Dekker
,
New York
,
1999
), pp.
161
198
.
3.
M. C.
Heller
,
J. F.
Carpenter
, and
T. W.
Randolph
,
Biotechnol. Prog.
13
,
590
(
1997
).
4.
L. V.
der Berg
,
Arch. Biochem. Biophys.
84
,
305
(
1959
).
5.
R.
Jaenicke
,
Philos. Trans. R. Soc. London B: Biol. Sci.
326
,
535
(
1990
).
6.
J. A.
Rupley
and
G.
Careri
,
Adv. Protein Chem.
41
,
37
(
1991
).
7.
S. N.
Timasheff
,
Annu. Rev. Biophys. Biomol. Struct.
22
,
67
(
1993
).
8.
N. K.
Jain
and
I.
Roy
,
Protein Sci.
18
,
24
(
2009
).
9.
S. L.
Lee
,
P. G.
Debenedetti
, and
J. R.
Errington
,
J. Chem. Phys.
122
,
204511
(
2005
).
10.
A.
Lerbret
,
P.
Bordat
,
F.
Affouard
,
M.
Descamps
, and
F.
Migliardo
,
J. Phys. Chem. B
109
,
11046
(
2005
).
11.
C.
Branca
,
S.
Magazú
,
G.
Maisano
, and
P.
Migliardo
,
J. Chem. Phys.
111
,
281
(
1999
).
12.
J.
Malsam
and
A.
Aksan
,
J. Phys. Chem. B
113
,
6792
(
2009
).
13.
D.
Corradini
,
E. G.
Strekalova
,
H. E.
Stanley
, and
P.
Gallo
,
Sci. Rep.
3
,
1218
(
2013
).
14.
J. H.
Crowe
,
L. M.
Crowe
, and
D.
Chapman
,
Science
223
,
701
(
1984
).
15.
J. F.
Carpenter
and
J. H.
Crowe
,
Biochemistry
28
,
3916
(
1989
).
16.
B.
Roser
,
Biopharm.
4
,
47
(
1991
).
17.
18.
P. S.
Belton
and
A. M.
Gil
,
Biopolymers
34
,
957
(
1994
).
19.
A.
Arsiccio
and
R.
Pisano
,
J. Phys. Chem. B
121
,
8652
(
2017
).
20.
M. S.
Salnikova
,
C. R.
Russell Middaugh
, and
J. H.
Rytting
,
Int. J. Pharm.
358
,
108
(
2008
).
21.
H. R.
Costantino
,
K. G.
Carrasquillo
,
R. A.
Cordero
,
M.
Mumenthaler
,
C. C.
Hsu
, and
K.
Griebenow
,
J. Pharm. Sci.
87
,
1412
(
1998
).
22.
A. M.
de Vos
,
M.
Ultsch
, and
A. A.
Kossiakoff
,
Science
255
,
306
(
1992
).
23.
A. K.
Malde
,
L.
Zuo
,
M.
Breeze
,
M.
Stroet
,
D.
Poger
,
P. C.
Nair
,
C.
Oostenbrink
, and
A. E.
Mark
,
J. Chem. Theory Comput.
7
,
4026
(
2011
).
24.
L.
Weng
,
S.
Ziaei
, and
G. D.
Elliot
,
Sci. Rep.
6
,
28795
(
2016
).
25.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1989
).
26.
N.
Schmid
,
A.
Eichenberger
,
A.
Choutko
,
S.
Riniker
,
M.
Winger
,
A.
Mark
, and
W.
van Gunsteren
,
Eur. Biophys. J.
40
,
843
(
2011
).
27.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
28.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
29.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
30.
M.
Parrinello
and
A.
Raman
,
J. Appl. Phys.
52
,
7182
(
1981
).
31.
M.-C.
Bellissent-Funel
and
J.
Teixeira
, in
Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products
, edited by
L.
Rey
and
J. C.
May
(
Marcel Dekker
,
New York
,
1999
), pp.
29
51
.
You do not currently have access to this content.