We perform a simulation study of the diffusion of small solutes in the confined domains imposed by inverse bicontinuous cubic phases for the primitive, diamond, and gyroid symmetries common to many lipid/water mesophase systems employed in experiments. For large diffusing domains, the long-time diffusion coefficient shows universal features when the size of the confining domain is renormalized by the Gaussian curvature of the triply periodic minimal surface. When bottlenecks are widely present, they become the most relevant factor for transport, regardless of the connectivity of the cubic phase.

1.
E. M.
Landau
and
J. P.
Rosenbusch
, “
Lipidic cubic phases: A novel concept for the crystallization of membrane proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
14532
14535
(
1996
).
2.
C.
Speziale
,
L. S.
Manni
,
C.
Manatschal
,
E. M.
Landau
, and
R.
Mezzenga
, “
A macroscopic H+ and Cl ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
7491
7496
(
2016
).
3.
C.
Fong
,
T.
Le
, and
C. J.
Drummond
, “
Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphile self-assembly materials by design
,”
Chem. Soc. Rev.
41
,
1297
1322
(
2012
).
4.
R.
Mezzenga
,
P.
Schurtenberger
,
A.
Burbidge
, and
M.
Michel
, “
Understanding foods as soft materials
,”
Nat. Mater.
4
,
729
740
(
2005
).
5.
X.
Mulet
,
B. J.
Boyd
, and
C. J.
Drummond
, “
Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions
,”
J. Colloid Interface Sci.
393
,
1
20
(
2013
).
6.
Z. A.
Almsherqi
,
S. D.
Kohlwein
, and
Y.
Deng
, “
Cubic membranes: A legend beyond the flatland* of cell membrane organization
,”
J. Cell Biol.
173
,
839
844
(
2006
).
7.
E. L.
Snapp
,
R. S.
Hegde
,
M.
Francolini
,
F.
Lombardo
,
S.
Colombo
,
E.
Pedrazzini
,
N.
Borgese
, and
J.
Lippincott-Schwartz
, “
Formation of stacked er cisternae by low affinity protein interactions
,”
J. Cell Biol.
163
,
257
269
(
2003
).
8.
Y.
Deng
,
M.
Marko
,
K. F.
Buttle
,
A.
Leith
,
M.
Mieczkowski
, and
C. A.
Mannella
, “
Cubic membrane structure in amoeba (chaos carolinensis) mitochondria determined by electron microscopic tomography
,”
J. Struct. Biol.
127
,
231
239
(
1999
).
9.
S. T.
Hyde
and
G. E.
Schröder-Turk
, “
Geometry of interfaces: Topological complexity in biology and materials
,”
Interface Focus
2
,
529
(
2012
).
10.
N.
Garti
,
P.
Somasundaran
, and
R.
Mezzenga
,
Self-Assembled Supramolecular Architectures: Lyotropic Liquid Crystals
(
John Wiley & Sons
,
2012
), Vol. 3.
11.
J.
Briggs
,
H.
Chung
, and
M.
Caffrey
, “
The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system
,”
J. Phys. II
6
,
723
751
(
1996
).
12.
R.
Templer
,
J.
Seddon
,
N.
Warrender
,
A.
Syrykh
,
Z.
Huang
,
R.
Winter
, and
J.
Erbes
, “
Inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures. The effects of chain length, hydration, and temperature
,”
J. Phys. Chem. B
102
,
7251
7261
(
1998
).
13.
D. C.
Turner
,
Z.-G.
Wang
,
S. M.
Gruner
,
D. A.
Mannock
, and
R. N.
McElhaney
, “
Structural study of the inverted cubic phases of di-dodecyl alkyl-β-d-glucopyranosyl-rac-glycerol
,”
J. Phys. II
2
,
2039
2063
(
1992
).
14.
J.
Barauskas
,
M.
Johnsson
, and
F.
Tiberg
, “
Self-assembled lipid superstructures: Beyond vesicles and liposomes
,”
Nano Lett.
5
,
1615
1619
(
2005
).
15.
R.
Negrini
and
R.
Mezzenga
, “
Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels
,”
Langmuir
28
,
16455
16462
(
2012
).
16.
R.
Mezzenga
,
C.
Meyer
,
C.
Servais
,
A. I.
Romoscanu
,
L.
Sagalowicz
, and
R. C.
Hayward
, “
Shear rheology of lyotropic liquid crystals: A case study
,”
Langmuir
21
,
3322
3333
(
2005
).
17.
A. I.
Tyler
,
H. M.
Barriga
,
E. S.
Parsons
,
N. L.
McCarthy
,
O.
Ces
,
R. V.
Law
,
J. M.
Seddon
, and
N. J.
Brooks
, “
Electrostatic swelling of bicontinuous cubic lipid phases
,”
Soft Matter
11
,
3279
3286
(
2015
).
18.
R.
Negrini
and
R.
Mezzenga
, “
ph-responsive lyotropic liquid crystals for controlled drug delivery
,”
Langmuir
27
,
5296
5303
(
2011
).
19.
I.
Martiel
,
N.
Baumann
,
J. J.
Vallooran
,
J.
Bergfreund
,
L.
Sagalowicz
, and
R.
Mezzenga
, “
Oil and drug control the release rate from lyotropic liquid crystals
,”
J. Controlled Release
204
,
78
84
(
2015
).
20.
A.
Zabara
and
R.
Mezzenga
, “
Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases
,”
J. Controlled Release
188
,
31
43
(
2014
).
21.
R.
Negrini
,
W.-K.
Fong
,
B. J.
Boyd
, and
R.
Mezzenga
, “
ph-responsive lyotropic liquid crystals and their potential therapeutic role in cancer treatment
,”
Chem. Commun.
51
,
6671
6674
(
2015
).
22.
E.
Nazaruk
,
P.
Miszta
,
S.
Filipek
,
E.
Gorecka
,
E. M.
Landau
, and
R.
Bilewicz
, “
Lyotropic cubic phases for drug delivery: Diffusion and sustained release from the mesophase evaluated by electrochemical methods
,”
Langmuir
31
,
12753
12761
(
2015
).
23.
J.
Clogston
,
G.
Craciun
,
D.
Hart
, and
M.
Caffrey
, “
Controlling release from the lipidic cubic phase by selective alkylation
,”
J. Controlled Release
102
,
441
461
(
2005
).
24.
J.
Clogston
and
M.
Caffrey
, “
Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids
,”
J. Controlled Release
107
,
97
111
(
2005
).
25.
K. W.
Lee
,
T.-H.
Nguyen
,
T.
Hanley
, and
B. J.
Boyd
, “
Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs
,”
Int. J. Pharm.
365
,
190
199
(
2009
).
26.
S.
Phan
,
W.-K.
Fong
,
N.
Kirby
,
T.
Hanley
, and
B. J.
Boyd
, “
Evaluating the link between self-assembled mesophase structure and drug release
,”
Int. J. Pharm.
421
,
176
182
(
2011
).
27.
A.
Zabara
,
R.
Negrini
,
O.
Onaca-Fischer
, and
R.
Mezzenga
, “
Perforated bicontinuous cubic phases with ph-responsive topological channel interconnectivity
,”
Small
9
,
3602
3609
(
2013
).
28.
T. G.
Meikle
,
S.
Yao
,
A.
Zabara
,
C. E.
Conn
,
C. J.
Drummond
, and
F.
Separovic
, “
Predicting the release profile of small molecules from within the ordered nanostructured lipidic bicontinuous cubic phase using translational diffusion coefficients determined by pfg-nmr
,”
Nanoscale
9
,
2471
2478
(
2017
).
29.
R.
Ghanbari
,
S.
Assenza
,
A.
Saha
, and
R.
Mezzenga
, “
Diffusion of polymers through periodic networks of lipid-based nanochannels
,”
Langmuir
33
,
3491
3498
(
2017
).
30.
M. H.
Jacobs
,
Diffusion Processes
(
Springer Science & Business Media
,
1967
).
31.
B.
Jönsson
,
H.
Wennerström
,
P.
Nilsson
, and
P.
Linse
, “
Self-diffusion of small molecules in colloidal systems
,”
Colloid Polym. Sci.
264
,
77
88
(
1986
).
32.
D. M.
Anderson
and
H.
Wennerstroem
, “
Self-diffusion in bicontinuous cubic phases, L3 phases, and microemulsions
,”
J. Phys. Chem.
94
,
8683
8694
(
1990
).
33.
G.
Allaire
, “
Homogenization and two-scale convergence
,”
SIAM J. Math. Anal.
23
,
1482
1518
(
1992
).
34.
R.
Zwanzig
, “
Diffusion past an entropy barrier
,”
J. Phys. Chem.
96
,
3926
3930
(
1992
).
35.
D.
Reguera
and
J.
Rubi
, “
Kinetic equations for diffusion in the presence of entropic barriers
,”
Phys. Rev. E
64
,
061106
(
2001
).
36.
J.
Kalnin
,
E.
Kotomin
, and
J.
Maier
, “
Calculations of the effective diffusion coefficient for inhomogeneous media
,”
J. Phys. Chem. Solids
63
,
449
456
(
2002
).
37.
A. M.
Berezhkovskii
,
V. Y.
Zitserman
, and
S. Y.
Shvartsman
, “
Effective diffusivity in periodic porous materials
,”
J. Chem. Phys.
119
,
6991
6993
(
2003
).
38.
N. S.
Gov
, “
Diffusion in curved fluid membranes
,”
Phys. Rev. E
73
,
041918
(
2006
).
39.
Z.
Schuss
,
A.
Singer
, and
D.
Holcman
, “
The narrow escape problem for diffusion in cellular microdomains
,”
Proc. Natl. Acad. Sci.
104
,
16098
16103
(
2007
).
40.
M.
Wang
and
N.
Pan
, “
Predictions of effective physical properties of complex multiphase materials
,”
Mater. Sci. Eng.: R: Rep.
63
,
1
30
(
2008
).
41.
P. S.
Burada
,
P.
Hänggi
,
F.
Marchesoni
,
G.
Schmid
, and
P.
Talkner
, “
Diffusion in confined geometries
,”
ChemPhysChem
10
,
45
54
(
2009
).
42.
N.
Ogawa
, “
Curvature-dependent diffusion flow on a surface with thickness
,”
Phys. Rev. E
81
,
061113
(
2010
).
43.
S.
Martens
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hänggi
, “
Entropic particle transport: Higher-order corrections to the Fick-Jacobs diffusion equation
,”
Phys. Rev. E
83
,
051135
(
2011
).
44.
C. V.
Valdes
, “
Effective diffusion in the region between two surfaces
,”
Phys. Rev. E
94
,
022121
(
2016
).
45.
R.
Hołyst
,
D.
Plewczyński
,
A.
Aksimentiev
, and
K.
Burdzy
, “
Diffusion on curved, periodic surfaces
,”
Phys. Rev. E
60
,
302
(
1999
).
46.
D.
Plewczyński
and
R.
Hołyst
, “
Reorientational angle distribution and diffusion coefficient for nodal and cylindrical surfaces
,”
J. Chem. Phys.
113
,
9920
9929
(
2000
).
47.
E.
Sanz
and
D.
Marenduzzo
, “
Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids
,”
J. Chem. Phys.
132
,
194102
(
2010
).
48.
H.
Von Schnering
and
R.
Nesper
, “
Nodal surfaces of fourier series: Fundamental invariants of structured matter
,”
Z. Phys. B: Condens. Matter
83
,
407
412
(
1991
).
49.
I. L.
Novak
,
P.
Kraikivski
, and
B. M.
Slepchenko
, “
Diffusion in cytoplasm: Effects of excluded volume due to internal membranes and cytoskeletal structures
,”
Biophys. J.
97
,
758
767
(
2009
).
50.
E. L.
Thomas
,
D. M.
Anderson
,
C. S.
Henkee
, and
D.
Hoffman
, “
Periodic area-minimizing surfaces in block copolymers
,”
Nature
334
,
598
601
(
1988
).
51.
R. M.
Kaufmann
,
S.
Khlebnikov
, and
B.
Wehefritz-Kaufmann
, “
The geometry of the double gyroid wire network: Quantum and classical
,”
J. Noncommutative Geom.
6
,
623
664
(
2012
).
52.
B.
Halperin
,
S.
Feng
, and
P. N.
Sen
, “
Differences between lattice and continuum percolation transport exponents
,”
Phys. Rev. Lett.
54
,
2391
(
1985
).
53.
G.
Schröder-Turk
,
S.
Ramsden
,
A.
Christy
, and
S.
Hyde
, “
Medial surfaces of hyperbolic structures
,”
Eur. Phys. J. B
35
,
551
564
(
2003
).
54.
A.
Aharony
and
D.
Stauffer
,
Introduction to Percolation Theory
(
Taylor & Francis
,
2003
).
55.
R.
Mezzenga
,
J.
Ruokolainen
,
G. H.
Fredrickson
,
E. J.
Kramer
,
D.
Moses
,
A. J.
Heeger
, and
O.
Ikkala
, “
Templating organic semiconductors via self-assembly of polymer colloids
,”
Science
299
,
1872
1874
(
2003
).
56.
L. M.
Antognini
,
S.
Assenza
,
C.
Speziale
, and
R.
Mezzenga
, “
Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments
,”
J. Chem. Phys.
145
,
084903
(
2016
).
57.
D. S.
ViswanathTushar
,
T. K.
Ghosh
,
D. H. L.
Prasad
,
N. V.
Dutt
, and
K. Y.
Rani
,
Viscosity of Liquids. Theory, Estimation, Experiment, and Data
(
Springer
,
2007
).
58.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
,
CRC Handbook of Chemistry and Physics
, 95th ed. (
CRC Press
,
2014
).
59.
J.
Kim
,
W.
Lu
,
W.
Qiu
,
L.
Wang
,
M.
Caffrey
, and
D.
Zhong
, “
Ultrafast hydration dynamics in the lipidic cubic phase: Discrete water structures in nanochannels
,”
J. Phys. Chem. B
110
,
21994
22000
(
2006
).
60.
L.
Longsworth
, “
Diffusion measurements, at 25, of aqueous solutions of amino acids, peptides and sugars
,”
J. Am. Chem. Soc.
75
,
5705
5709
(
1953
).
61.
C. A.
Lambert
,
L. H.
Radzilowski
, and
E. L.
Thomas
, “
Triply periodic level surfaces as models for cubic tricontinuous block copolymer morphologies
,”
Philos. Trans. R. Soc., A
354
,
2009
2023
(
1996
).
62.
G. E.
Schröder-Turk
,
A.
Fogden
, and
S. T.
Hyde
, “
Bicontinuous geometries and molecular self-assembly: Comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces
,”
Eur. Phys. J. B
54
,
509
524
(
2006
).
You do not currently have access to this content.