Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.

1.
L. D.
Gelb
,
K. E.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
Rep. Prog. Phys.
62
,
1573
(
1999
).
2.
P.
Huber
,
J. Phys.: Condens. Matter
27
,
103102
(
2015
).
3.
J. H.
Page
,
J.
Liu
,
B.
Abeles
,
E.
Herbolzheimer
,
H. W.
Deckman
, and
D. A.
Weitz
,
Phys. Rev. E
52
,
2763
(
1995
).
4.
K.
Schappert
and
R.
Pelster
,
Europhys. Lett.
105
,
56001
(
2014
).
5.
G. Y.
Gor
and
B.
Gurevich
,
Geophys. Res. Lett.
45
(
1
),
146
155
, https://doi.org/10.1002/2017GL075321 (
2018
).
6.
W. F.
Murphy
,
J. Acoust. Soc. Am.
71
,
1458
(
1982
).
7.
K. L.
Warner
and
J. R.
Beamish
,
J. Appl. Phys.
63
,
4372
(
1988
).
8.
J. H.
Page
,
J.
Liu
,
B.
Abeles
,
H. W.
Deckman
, and
D. A.
Weitz
,
Phys. Rev. Lett.
71
,
1216
(
1993
).
9.
E.
Molz
,
A. P. Y.
Wong
,
M. H. W.
Chan
, and
J. R.
Beamish
,
Phys. Rev. B
48
,
5741
(
1993
).
10.
E. B.
Molz
and
J. R.
Beamish
,
J. Low Temp. Phys.
101
,
1055
(
1995
).
11.
G.
Beaudoin
,
P.
Haljan
,
M.
Paetkau
, and
J. R.
Beamish
,
J. Low Temp. Phys.
105
,
113
(
1996
).
12.
E. V.
Charnaya
,
P. G.
Plotnikov
,
D.
Michel
,
C.
Tien
,
B. F.
Borisov
,
I. G.
Sorina
, and
E. I.
Martynova
,
Phys. B
299
,
56
(
2001
).
13.
K.
Schappert
and
R.
Pelster
,
Phys. Rev. B
78
,
174108
(
2008
).
14.
K.
Matsumoto
,
H.
Tsuboya
,
K.
Yoshino
,
S.
Abe
,
H.
Tsujii
, and
H.
Suzuki
,
J. Phys. Soc. Jpn.
78
,
034601
(
2009
).
15.
B. F.
Borisov
,
A. V.
Gartvik
,
F. V.
Nikulin
, and
E. V.
Charnaya
,
Acoust. Phys.
52
,
138
(
2006
).
16.
B. F.
Borisov
,
A. V.
Gartvik
,
A. G.
Gorchakov
, and
E. V.
Charnaya
,
Phys. Solid State
51
,
823
(
2009
).
17.
E. V.
Charnaya
,
Acoust. Phys.
54
,
802
(
2008
).
18.
K.
Schappert
and
R.
Pelster
,
J. Phys.: Condens. Matter
25
,
415302
(
2013
).
19.
K.
Schappert
and
R.
Pelster
,
Phys. Rev. B
88
,
245443
(
2013
).
20.
K.
Schappert
and
R.
Pelster
,
Langmuir
30
,
14004
(
2014
).
21.
K.
Schappert
,
V.
Naydenov
, and
R.
Pelster
,
J. Phys. Chem. C
120
,
25990
(
2016
).
22.
G. Y.
Gor
,
Langmuir
30
,
13564
(
2014
).
23.
G. Y.
Gor
,
D. W.
Siderius
,
C. J.
Rasmussen
,
W. P.
Krekelberg
,
V. K.
Shen
, and
N.
Bernstein
,
J. Chem. Phys.
143
,
194506
(
2015
).
24.
G. Y.
Gor
,
D. W.
Siderius
,
V. K.
Shen
, and
N.
Bernstein
,
J. Chem. Phys.
145
,
164505
(
2016
).
25.
G. Y.
Gor
,
Poromechanics VI
(
ASCE
,
2017
), pp.
465
472
.
26.
D.
Zhao
,
J.
Feng
,
Q.
Huo
,
N.
Melosh
,
G. H.
Fredrickson
,
B. F.
Chmelka
, and
G. D.
Stucky
,
Science
279
,
548
(
1998
).
27.
W.
Fan
,
M. A.
Snyder
,
S.
Kumar
,
P.-S.
Lee
,
W. C.
Yoo
,
A. V.
McCormick
,
R. L.
Penn
,
A.
Stein
, and
M.
Tsapatsis
,
Nat. Mater.
7
,
984
(
2008
).
28.
C. J.
Rasmussen
,
A.
Vishnyakov
,
M.
Thommes
,
B. M.
Smarsly
,
F.
Kleitz
, and
A. V.
Neimark
,
Langmuir
26
,
10147
(
2010
).
29.
P.
Levitz
,
G.
Ehret
,
S. K.
Sinha
, and
J. M.
Drake
,
J. Chem. Phys.
95
,
6151
(
1991
).
30.
J.
Landers
,
G. Y.
Gor
, and
A. V.
Neimark
,
Colloids Surf., A
437
,
3
(
2013
).
31.
J. M.
Rickman
,
Phys. Rev. E
86
,
062501
(
2012
).
32.
Z.
Sun
and
Y.
Kang
,
Phys. Lett. A
378
,
1739
(
2014
).
33.
E.
Keshavarzi
,
F.
Namdari
, and
S. R.
Jildani
,
Chem. Phys.
468
,
15
(
2016
).
34.
A.
Vadakkepatt
and
A.
Martini
,
Tribol. Int.
44
,
330
(
2011
).
35.
A.
Martini
and
A.
Vadakkepatt
,
Tribol. Lett.
38
,
33
(
2010
).
36.
G. E.
Norman
and
V. S.
Filinov
,
High Temp.
7
,
216
(
1969
).
37.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Pergamon
,
1980
), Vols. 5 and 30.
38.
B.
Coasne
,
J.
Czwartos
,
M.
Sliwinska-Bartkowiak
, and
K. E.
Gubbins
,
J. Phys. Chem. B
113
,
13874
(
2009
).
39.
P. I.
Ravikovitch
and
A. V.
Neimark
,
Langmuir
22
,
11171
(
2006
).
40.
G. Y.
Gor
and
A. V.
Neimark
,
Langmuir
26
,
13021
(
2010
).
41.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
42.
M. S. A.
Baksh
and
R. T.
Yang
,
AIChE J.
37
,
923
(
1991
).
43.
G. J.
Tjatjopoulos
,
D. L.
Feke
, and
J. A.
Mann
, Jr.
,
J. Phys. Chem.
92
,
4006
(
1988
).
44.
A.
Vishnyakov
and
A. V.
Neimark
,
J. Phys. Chem. B
105
,
7009
(
2001
).
45.
P. I.
Ravikovitch
,
D.
Wei
,
W. T.
Chueh
,
G. L.
Haller
, and
A. V.
Neimark
,
J. Phys. Chem. B
101
,
3671
(
1997
).
46.
G. Y.
Gor
,
C. J.
Rasmussen
, and
A. V.
Neimark
,
Langmuir
28
,
12100
(
2012
).
47.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
48.
D. W.
Siderius
,
W. P.
Krekelberg
,
W.-S.
Chiang
,
V. K.
Shen
, and
Y.
Liu
,
Langmuir
33
,
14252
(
2017
).
49.
C.
Tegeler
,
R.
Span
, and
W.
Wagner
,
J. Phys. Chem. Ref. Data
28
,
779
(
1999
).
50.
D.
Keffer
,
H. T.
Davis
, and
A. V.
McCormick
,
Adsorption
2
,
9
(
1996
).
51.
A. T. J.
Hayward
,
Br. J. Appl. Phys.
18
,
965
(
1967
).
52.
G. Y.
Gor
,
P.
Huber
, and
N.
Bernstein
,
Appl. Phys. Rev.
4
,
011303
(
2017
).
53.
J. W.
Stewart
,
J. Phys. Chem. Solids
29
,
641
(
1968
).
54.
M. S.
Anderson
and
C. A.
Swenson
,
J. Phys. Chem. Solids
36
,
145
(
1975
).
55.
A. N.
Utyuzh
and
V. V.
Kechin
,
Sov. Phys. JETP
58
,
460
(
1983
).
56.
H.
Shimizu
,
H.
Tashiro
,
T.
Kume
, and
S.
Sasaki
,
Phys. Rev. Lett.
86
,
4568
(
2001
).
57.
J.
Jagiello
and
J. P.
Olivier
,
Adsorption
19
,
777
(
2013
).
58.
J.
Jagiello
and
J. P.
Olivier
,
Carbon
55
,
70
(
2013
).
59.
R. T.
Cimino
,
P.
Kowalczyk
,
P. I.
Ravikovitch
, and
A. V.
Neimark
,
Langmuir
33
,
1769
(
2017
).
You do not currently have access to this content.