Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics “detectors” to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.

1.
J. R.
Lewandowski
,
H. J.
Sass
,
S.
Grzesiek
,
M.
Blackledge
, and
L.
Emsley
,
J. Am. Chem. Soc.
133
(
42
),
16762
(
2011
).
2.
A. G.
Redfield
,
IBM J. Res. Dev.
1
(
1
),
19
(
1957
).
3.
A. G.
Redfield
,
Adv. Magn. Opt. Reson.
1
,
1
(
1965
).
4.
G.
Lipari
and
A.
Szabo
,
J. Am. Chem. Soc.
104
(
17
),
4559
(
1982
).
5.
G. M.
Clore
,
A.
Szabo
,
A.
Bax
,
L. E.
Kay
,
P. C.
Driscoll
, and
A. M.
Gronenborn
,
J. Am. Chem. Soc.
112
,
4989
(
1990
).
6.
V.
Chevelkov
,
U.
Fink
, and
B.
Reif
,
J. Biomol. NMR
45
(
1-2
),
197
(
2009
).
7.
P.
Schanda
,
B. H.
Meier
, and
M.
Ernst
,
J. Am. Chem. Soc.
132
(
45
),
15957
(
2010
).
8.
B.
Halle
and
H.
Wennerström
,
J. Chem. Phys.
75
(
4
),
1928
(
1981
).
9.
B.
Halle
,
J. Chem. Phys.
131
,
224507
(
2009
).
10.
T.
Zinkevich
,
V.
Chevelkov
,
B.
Reif
,
K.
Saalwächter
, and
A.
Krushelnitsky
,
J. Biomol. NMR
57
(
3
),
219
(
2013
).
11.
J. D.
Haller
and
P.
Schanda
,
J. Biomol. NMR
57
(
3
),
263
(
2013
).
12.
L.
Mollica
,
M.
Baias
,
J. R.
Lewandowski
,
B. J.
Wylie
,
L. J.
Sperling
,
C. M.
Rienstra
,
L.
Emsley
, and
M.
Blackledge
,
J. Phys. Chem. Lett.
3
(
23
),
3657
(
2012
).
13.
J. M.
Lamley
,
M. J.
Lougher
,
H. J.
Sass
,
M.
Rogowski
,
S.
Grzesiek
, and
J. R.
Lewandowski
,
Phys. Chem. Chem. Phys.
17
,
21997
(
2015
).
14.
A. A.
Smith
,
M.
Ernst
, and
B. H.
Meier
,
Angew. Chem., Int. Ed.
129
(
44
),
13778
(
2017
).
15.
T.
Smith
and
J.
Guild
,
Trans. Opt. Soc.
33
(
3
),
73
(
1931
).
16.
G.
Wyszecki
and
W. S.
Stiles
,
Color Science: Concepts and Methods, Quantitative Data and Formulae
(
Wiley
,
2000
).
17.
G.
Lipari
and
A.
Szabo
,
J. Am. Chem. Soc.
104
(
17
),
4546
(
1982
).
18.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
(
Clarendon Press
,
Oxford
,
1968
).
19.
P. A.
Beckmann
,
Phys. Rep.
171
(
3
),
85
(
1988
).
20.
P.
Schanda
and
M.
Ernst
,
Prog. Nucl. Magn. Reson. Spectrosc.
96
,
1
(
2016
).
21.
U.
Haeberlen
and
J. S.
Waugh
,
Phys. Rev.
185
(
2
),
420
(
1969
).
22.
R.
Kurbanov
,
T.
Zinkevich
, and
A.
Krushelnitsky
,
J. Chem. Phys.
135
(
18
),
184104
(
2011
).
23.
P.
Rovo
and
R.
Linser
,
J. Phys. Chem. B
121
(
25
),
6117
(
2017
).
24.
J.
Peng
and
G.
Wagner
,
J. Magn. Reson.
98
(
2
),
308
(
1992
).
25.
M. L.
Gill
,
R. A.
Byrd
, and
A. G. I.
Palmer
,
Phys. Chem. Chem. Phys.
18
(
8
),
5839
(
2016
).
26.
N. A.
Farrow
,
O.
Zhang
,
A.
Szabo
,
D. A.
Torchia
, and
L. E.
Kay
,
J. Biomol. NMR
6
(
2
),
153
(
1995
).
27.
C. H.
Papavoine
,
M. L.
Remerowski
,
L. M.
Horstink
,
R. N.
Konings
,
C. W.
Hilbers
, and
F. J.
van de Ven
,
Biochemistry
36
(
13
),
4015
(
1997
).
28.
K. W.
Wagner
,
Ann. Phys. (Ger.)
345
(
5
),
817
(
1913
).
29.
H.
Akaike
,
IEEE Trans. Autom. Control
19
(
6
),
716
(
1974
).
30.
C. M.
Hurvich
and
C.-L.
Tsai
,
J. Time Ser. Anal.
14
(
3
),
271
(
1993
).
31.
J.
Shang
and
J.
Cavanaugh
,
Comput. Stat. Data Anal.
52
(
4
),
2004
(
2008
).
32.
I.
Solomon
,
Phys. Rev.
99
(
2
),
559
(
1955
).
33.
A. A.
Smith
,
E.
Testori
,
R.
Cadalbert
,
B. H.
Meier
, and
M.
Ernst
,
J. Biomol. NMR
65
(
3-4
),
171
(
2016
).
34.
J. R.
Lewandowski
,
J.
Sein
,
H. J.
Sass
,
S.
Grzesiek
,
M.
Blackledge
, and
L.
Emsley
,
J. Am. Chem. Soc.
132
(
24
),
8252
(
2010
).
35.
D. M.
LeMaster
,
J. Biomol. NMR
6
(
4
),
366
(
1995
).
36.
D. M.
LeMaster
,
J. Am. Chem. Soc.
121
(
8
),
1726
(
1999
).
37.
S. N.
Khan
,
C.
Charlier
,
R.
Augustyniak
,
N.
Salvi
,
V.
Dejean
,
G.
Bodenhausen
,
O.
Lequin
,
P.
Pelupessy
, and
F.
Ferrage
,
Biophys. J.
109
(
5
),
988
(
2015
).
38.
P.
Schanda
,
B. H.
Meier
, and
M.
Ernst
,
J. Magn. Reson.
210
(
2
),
246
(
2011
).
39.
A.
Barth
,
Biochim. Biophys. Acta
1767
(
9
),
1073
(
2007
).
40.
L.
Yao
,
B.
Vogeli
,
J.
Ying
, and
A.
Bax
,
J. Am. Chem. Soc.
130
(
49
),
16518
(
2008
).
41.
T.
Mathworks
, MATLAB Release 2013b,
2013
.
42.
A. A.
Smith
,
M.
Ernst
, and
B. H.
Meier
, Distortion Free Relaxation Analysis Technique software, URL: http://difrate.sourceforge.net,
2018
.
43.
N. A.
Lakomek
,
S.
Penzel
,
A.
Lends
,
R.
Cadalbert
,
M.
Ernst
, and
B. H.
Meier
,
Chemistry
23
(
39
),
9425
(
2017
).
44.
T.
Mathworks
, MATLAB and Optimization Toolbox Release 2013b,
2013
.
45.
N.
Metropolis
and
S.
Ulam
,
J. Am. Stat. Assoc.
44
(
247
),
335
(
1949
).
46.
A. D.
Mackerell
, Jr.
,
J. Comput. Chem.
25
(
13
),
1584
(
2004
).
47.
A. D.
Mackerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
, III
,
J. Comput. Chem.
25
(
11
),
1400
(
2004
).
48.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Angew. Chem., Int. Ed.
29
,
992
(
1990
).
49.
C.
Charlier
,
S. N.
Khan
,
T.
Marquardsen
,
P.
Pelupessy
,
V.
Reiss
,
D.
Sakellariou
,
G.
Bodenhausen
,
F.
Engelke
, and
F.
Ferrage
,
J. Am. Chem. Soc.
135
(
49
),
18665
(
2013
).
50.
T.
Gullion
and
J.
Schaefer
,
J. Magn. Res.
81
(
1
),
196
(
1989
).

Supplementary Material

You do not currently have access to this content.