The thermodynamic and kinetic parameters of an RNA base pair with different nearest and next nearest neighbors were obtained through long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The results indicate that thermodynamic parameters of GC base pair are dependent on the nearest neighbor base pair, and the next nearest neighbor base pair has little effect, which validated the nearest-neighbor model. The closing and opening rates of the GC base pair also showed nearest neighbor dependences. At certain temperature, the closing and opening rates of the GC pair with nearest neighbor AU is larger than that with the nearest neighbor GC, and the next nearest neighbor plays little role. The free energy landscape of the GC base pair with the nearest neighbor GC is rougher than that with nearest neighbor AU.

1.
D.
Thirumalai
and
S. A.
Woodson
,
Acc. Chem. Res.
29
,
433
(
1996
).
2.
C.
Hyeon
,
R. I.
Dima
, and
D.
Thirumalai
,
Structure
14
,
1633
(
2006
).
3.
K.
Gerdes
and
E. G. H.
Wagner
,
Curr. Opin. Microbiol.
10
,
117
(
2007
).
4.
P. C.
Bevilacqua
and
J. M.
Blose
,
Annu. Rev. Phys. Chem.
59
,
79
(
2008
).
5.
K.
Sarkar
,
D. A.
Nguyen
, and
M.
Gruebele
,
RNA
16
,
2427
(
2010
).
6.
J. C.
Lin
and
D.
Thirumalai
,
J. Am. Chem. Soc.
135
,
16641
(
2013
).
7.
S.
Gong
,
Y.
Wang
, and
W.
Zhang
,
J. Chem. Phys.
142
,
015103
(
2015
).
9.
P. T. X.
Li
,
J.
Vieregg
, and
I.
Tinoco
,
Annu. Rev. Biochem.
77
,
77
(
2008
).
10.
E. A.
Dethoff
,
J.
Chugh
,
A. M.
Mustoe
, and
H. M.
Al-Hashimi
,
Nature
482
,
322
(
2012
).
11.
A. M.
Mustoe
,
C. L.
Brooks
, and
H. M.
Al-Hashimi
,
Annu. Rev. Biochem.
83
,
441
(
2014
).
12.
T.
Xia
,
J.
SantaLucia
,
M. E.
Burkard
,
R.
Kierzek
,
S. J.
Schroeder
,
X.
Jiao
,
C.
Cox
, and
D. H.
Turner
,
Biochemistry
37
,
14719
(
1998
).
13.
J. L.
Leroy
,
E.
Charretier
,
M.
Kochoyan
, and
M.
Guéron
,
Biochemistry
27
,
8894
(
1988
).
14.
E.
Folta-Stogniew
and
I. M.
Russu
,
Biochemistry
33
,
11016
(
1994
).
15.
K.
Snoussi
and
J. L.
Leroy
,
Biochemistry
40
,
8898
(
2001
).
16.
E.
Giudice
and
R.
Lavery
,
J. Am. Chem. Soc.
125
,
4998
(
2003
).
17.
E.
Giudice
,
P.
Várnai
, and
R.
Lavery
,
Nucleic Acids Res.
31
,
1434
(
2003
).
18.
Y.
Pan
and
A. D.
MacKerell
,
Nucleic Acids Res.
31
,
7131
(
2003
).
19.
F.
Briki
,
J.
Ramstein
,
R.
Lavery
, and
D.
Genest
,
J. Am. Chem. Soc.
113
,
2490
(
1991
).
20.
J.
Bernet
,
K.
Zakrzewska
, and
R.
Lavery
,
J. Mol. Struct.: THEOCHEM
398-399
,
473
(
1997
).
21.
P.
Várnai
,
M.
Canalia
, and
J.-L.
Leroy
,
J. Am. Chem. Soc.
126
,
14659
(
2004
).
22.
M. F.
Hagan
,
A. R.
Dinner
,
D.
Chandler
, and
A. K.
Chakraborty
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
13922
(
2003
).
23.
F.
Colizzi
and
G.
Bussi
,
J. Am. Chem. Soc.
134
,
5173
(
2012
).
24.
N. K.
Banavali
and
A. D.
MacKerell
,
J. Mol. Biol.
319
,
141
(
2002
).
25.
P.
Várnai
and
R.
Lavery
,
J. Am. Chem. Soc.
124
,
7272
(
2002
).
26.
J.
Zhang
,
M.
Lin
,
R.
Chen
 et al.,
J. Chem. Phys.
128
,
125107
(
2008
).
27.
Y.
Wang
,
S.
Gong
,
Z.
Wang
, and
W.
Zhang
,
J. Chem. Phys.
144
,
115101
(
2016
).
28.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
29.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
30.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
31.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
32.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
,
1049
(
2000
).
33.
J.
Wang
and
P. A.
Kollman
,
J. Comput. Chem.
22
,
1219
(
2001
).
34.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Sponer
,
T. E.
Cheatham
 III
,
C. A.
Laughton
, and
M.
Orozco
,
Biophys. J.
92
,
3817
(
2007
).
35.
M.
Zgarbová
,
M.
Otyepka
,
J.
Sponer
,
A.
Mládek
,
P.
Banáš
,
T. E.
Cheatham
 III
, and
P.
Jurečka
,
J. Chem. Theory Comput.
7
,
2886
(
2011
).
36.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
37.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
38.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
39.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
40.
B. J. E.
Lennard-Jones
,
Proc. Phys. Soc.
43
,
461
(
1931
).
41.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Sov. Phys. -Usp.
73
,
153
(
1961
).
42.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
43.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
(
1992
).
44.
E.
Hershkovitz
,
E.
Tannenbaum
,
S. B.
Howerton
,
A.
Sheth
,
A.
Tannenbaum
, and
L. D.
Williams
,
Nucleic Acids Res.
31
,
6249
(
2003
).
45.
B. J.
Berne
,
M.
Borkovec
, and
J. E.
Straub
,
J. Phys. Chem.
92
,
3711
(
1988
).
46.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
47.
G.
Hummer
,
J. Chem. Phys.
120
,
516
(
2004
).
48.
H. S.
Chung
,
J. M.
Louis
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
11837
(
2009
).
49.
H. S.
Chung
and
W. A.
Eaton
,
Nature
502
,
685
(
2013
).
50.
J. D.
Bryngelson
and
P. G.
Wolynes
,
J. Phys. Chem.
93
,
6902
(
1989
).
51.
A. H.
Aytenfisu
,
A.
Spasic
,
A.
Grossfield
,
H. A.
Stern
, and
D. H.
Mathews
,
J. Chem. Theory Comput.
13
,
900
(
2017
).
52.
S. S.
Cho
,
D. L.
Pincus
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
17349
(
2009
).
53.
Y.
Zhang
,
J.
Zhang
, and
W.
Wang
,
J. Am. Chem. Soc.
133
,
6882
(
2011
).
54.
Z.-J.
Tan
and
S.-J.
Chen
,
Biophys. J.
92
,
3615
(
2007
).
55.
A. A.
Chen
,
M.
Marucho
,
N. A.
Baker
, and
R. V.
Pappu
,
Methods Enzymol.
469
,
411
(
2009
).
56.
Y.-Y.
Wu
,
Z.-L.
Zhang
,
J.-S.
Zhang
,
X.-L.
Zhu
, and
Z.-J.
Tan
,
Nucleic Acids Res.
43
,
6156
(
2015
).
You do not currently have access to this content.