The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

1.
R.
Konrat
,
M.
Tollinger
,
G.
Kontaxis
, and
B.
Kräutler
,
Monatsh. Chem.
130
,
961
(
1999
).
2.
A.
Nilsson
and
L. G. M.
Pettersson
,
Nat. Commun.
6
,
8998
(
2015
).
3.
M.-C.
Bellissent-Funel
,
A.
Hassanali
,
M.
Havenith
,
R.
Henchman
,
P.
Pohl
,
F.
Sterpone
,
D.
van der Spoel
,
Y.
Xu
, and
A. E.
Garcia
,
Chem. Rev.
116
,
7673
(
2016
).
4.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
 et al,
Chem. Rev.
116
,
7463
(
2016
).
5.
W. T. S.
Cole
and
R. J.
Saykally
,
J. Chem. Phys.
147
,
064301
(
2017
).
6.
K.
Modig
and
B.
Halle
,
J. Am. Chem. Soc.
124
,
12031
(
2002
).
7.
N.
Muller
,
J. Chem. Phys.
43
,
2555
(
1965
).
8.
J.
Hindman
,
J. Chem. Phys.
44
,
4582
(
1966
).
9.
F.
Mallamace
,
C.
Corsaro
,
M.
Broccio
,
C.
Branca
,
N.
González-Segredo
,
J.
Spooren
,
S.-H.
Chen
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
12725
(
2008
).
10.
H.
Elgabarty
,
R. Z.
Khaliullin
, and
T. D.
Kühne
,
Nat. Commun.
6
,
8318
(
2015
).
11.
F. H.
Stillinger
,
Science
209
,
451
(
1980
).
12.
M.
Odelius
,
M.
Cavalleri
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
Phys. Rev. B
73
,
024205
(
2006
).
13.
T.
Tokushima
,
Y.
Harada
,
O.
Takahashi
,
Y.
Senba
,
H.
Ohashi
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
S.
Shin
,
Chem. Phys. Lett.
460
,
387
(
2008
).
14.
T.
Fransson
,
Y.
Harada
,
N.
Kosugi
,
N. A.
Besley
,
B.
Winter
,
J. J.
Rehr
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Chem. Rev.
116
,
7551
(
2016
).
15.
T. D.
Kühne
and
R. Z.
Khaliullin
,
Nat. Commun.
4
,
1450
(
2013
).
16.
U.
Gelius
and
K.
Siegbahn
,
Faraday Discuss. Chem. Soc.
54
,
257
(
1972
).
17.
H.
Basch
,
Chem. Phys. Lett.
5
,
337
(
1970
).
18.
R. E.
Block
,
J. Magn. Reson.
5
,
155
(
1971
).
19.
D.
Zeroka
,
Chem. Phys. Lett.
14
,
471
(
1972
).
20.
B. J.
Lindberg
,
J. Electron Spectrosc. Relat. Phenom.
5
,
149
(
1974
).
21.
G. J.
Martin
,
M. L.
Martin
, and
S.
Odiot
,
Org. Magn. Reson.
7
,
2
(
1975
).
22.
J.
Mason
,
J. Chem. Soc., Faraday Trans. II
73
,
1464
(
1977
).
23.
T.
Helgaker
and
K.
Ruud
,
Chem. Rev.
99
,
293
(
1999
).
24.
I. M.
Svishchev
and
P. G.
Kusalik
,
J. Am. Chem. Soc.
115
,
8270
(
1993
).
25.
D. B.
Chesnut
and
B. E.
Rusiloski
,
J. Mol. Struct.: THEOCHEM
314
,
19
(
1994
).
26.
V. G.
Malkin
,
O. L.
Malkina
,
G.
Steinebrunner
, and
H.
Huber
,
Chem. Eur. J.
2
,
452
(
1996
).
27.
K. V.
Mikkelsen
,
K.
Ruud
, and
T.
Helgaker
,
Chem. Phys. Lett.
253
,
443
(
1996
).
28.
T. M.
Nymand
,
P.-O.
Åstrand
, and
K. V.
Mikkelsen
,
J. Phys. Chem. B
101
,
4105
(
1997
).
29.
B. G.
Pfrommer
,
F.
Mauri
, and
S. G.
Louie
,
J. Am. Chem. Soc.
122
,
123
(
2000
).
30.
D.
Sebastiani
and
M.
Parrinello
,
ChemPhysChem
3
,
675
(
2002
).
31.
D.
Sebastiani
and
U.
Rothlisberger
,
J. Phys. Chem. B
108
,
2807
(
2004
).
32.
T. S.
Pennanen
,
J.
Vaara
,
P.
Lantto
,
J.
Sillanpaa
,
K.
Laasonen
, and
J.
Jokisaari
,
J. Am. Chem. Soc.
126
,
11093
(
2004
).
33.
J.
Kongsted
,
C. B.
Nielsen
,
K. V.
Mikkelsen
,
O.
Christiansen
, and
K. J.
Ruud
,
J. Chem. Phys.
126
,
034510
(
2007
).
34.
H. C.
Georg
and
S.
Canuto
,
J. Phys. Chem. B
116
,
11247
(
2012
).
35.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics
(
Cambridge University Press
,
Cambridge
,
2009
).
36.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
37.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
38.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
39.
T.
Risthaus
and
S.
Grimme
,
J. Chem. Theory Comput.
9
,
1580
(
2013
).
40.
H. F. M. C.
Martiniano
,
N.
Galamba
, and
B. J. C.
Cabral
,
J. Chem. Phys.
140
,
164511
(
2014
).
41.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
42.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
43.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
44.
M. A.
González
and
J. L. F.
Abascal
,
J. Chem. Phys.
135
,
224516
(
2011
).
45.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
,
Comput. Phys. Commun.
91
,
43
(
1995
).
46.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
47.
G.
Martyna
and
M. E.
Tuckerman
,
J. Chem. Phys.
110
,
2810
(
1999
).
48.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
49.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
119
,
3015
(
2003
).
50.
S. P. A.
Sauer
and
W. T.
Raynes
,
J. Chem. Phys.
113
,
3121
(
2000
).
51.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H. V.
Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
 et al,
Comput. Phys. Commun.
181
,
1477
(
2010
).
52.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
53.
H.
Nakatsuji
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific Singapore
,
Singapore
,
2009
).
54.
H. H.
Corzo
,
J. M.
Krosser
,
A.
Galano
, and
J. V.
Ortiz
,
Theor. Chem. Acc.
135
,
236
(
2016
).
55.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
56.
T.
Hatamoto
,
M.
Matsumoto
,
X.
Liu
,
K.
Ueda
,
M.
Hoshino
,
K.
Nakagawa
,
T.
Tanaka
,
H.
Tanaka
,
M.
Ehara
,
R.
Tamaki
 et al,
J. Electron Spectrosc. Relat. Phenom.
155
,
54
(
2006
).
57.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
, et al, gaussian 09, Revision A.02, Gaussian, Inc.
58.
C.
Steinmann
,
J. M. H.
Olsen
, and
J.
Kongsted
,
J. Chem. Theory Comput.
10
,
981
(
2014
).
59.
U. C.
Sing
and
P. A.
Kollman
,
J. Comput. Chem.
5
,
129
(
1984
).
60.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2006
).
61.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
62.
H. A.
Stern
and
B. J.
Berne
,
J. Chem. Phys.
115
,
7622
(
2001
).
63.
A. K.
Soper
,
ISRN Phys. Chem.
2013
,
279463
.
64.
K. T.
Wikfeldt
,
M.
Leetmaa
,
M. P.
Ljungberg
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
J. Phys. Chem. B
113
,
6246
(
2009
).
65.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
,
J. Chem. Phys.
138
,
074506
(
2013
).
66.
P. L.
Chao
and
A. J.
Hardwick
,
Mol. Phys.
93
,
511
(
1998
).
67.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
,
318
(
2001
).
68.
J. L.
Finney
,
A.
Hallbrucker
,
I.
Kohl
,
A. K.
Soper
, and
D. T.
Bowron
,
Phys. Rev. Lett.
88
,
225503
(
2002
).
69.
P. C.
do Couto
,
S. G.
Estácio
, and
B. J. C.
Cabral
,
J. Chem. Phys.
123
,
054510
(
2005
).
70.
R. E.
Wasylishen
and
D. L.
Bryce
,
J. Chem. Phys.
117
,
10061
(
2002
).
71.
N. M.
Sergeyev
,
N. D.
Sergeyeva
,
Y. A.
Strelenko
, and
W. T.
Raynes
,
Chem. Phys. Lett.
277
,
142
(
1997
).
72.
L.
Burnett
and
A. H. J.
Zeltmann
,
J. Chem. Phys.
60
,
4636
(
1974
).
73.
R.
Sankari
,
M.
Ehara
,
H.
Nakatsuji
,
Y.
Senba
,
K.
Hosokawa
,
H.
Yoshida
,
A.
De Fanis
,
Y.
Tamenori
,
S.
Aksela
, and
K.
Ueda
,
Chem. Phys. Lett.
380
,
647
(
2003
).
74.
B.
Winter
,
E. F.
Aziz
,
U.
Hergenhahn
,
M.
Faubel
, and
I. V.
Hertel
,
J. Chem. Phys.
126
,
124504
(
2007
).
75.
D.
Lide
,
CRC Handbook of Chemistry and Physics
, 84th ed. (
Taylor & Francis
,
2003
), ISBN: 9780849304842.
76.
K.
Ichikawa
,
Y.
Kameda
,
T.
Yamaguchi
,
H.
Wakita
, and
M.
Misawa
,
Mol. Phys.
73
,
79
(
1991
).
77.
R. E.
Wasylishen
and
J. O.
Friedrich
,
Can. J. Chem.
65
,
2238
(
1987
).
78.
A. E.
Florin
and
J. M.
Alei
,
J. Chem. Phys.
47
,
4268
(
1967
).
You do not currently have access to this content.