Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1–3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii′) which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii′, it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

1.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
310
(
5976
),
393
395
(
1984
).
2.
R. J.
Hemley
,
L. C.
Chen
, and
H. K.
Mao
,
Nature
338
(
6217
),
638
640
(
1989
).
3.
R. J.
Hemley
,
Annu. Rev. Phys. Chem.
51
(
1
),
763
800
(
2000
).
4.
J.-Y.
Chen
and
C.-S.
Yoo
,
Proc. Natl. Acad. Sci. U. S. A.
108
(
19
),
7685
7688
(
2011
).
5.
A. F.
Goncharov
and
R. J.
Hemley
,
Chem. Soc. Rev.
35
(
10
),
899
907
(
2006
).
6.
A. F.
Goncharov
,
V. V.
Struzhkin
,
H. K.
Mao
, and
R. J.
Hemley
,
Phys. Rev. Lett.
83
(
10
),
1998
2001
(
1999
).
7.
C. G.
Salzmann
,
P. G.
Radaelli
,
E.
Mayer
, and
J. L.
Finney
,
Phys. Rev. Lett.
103
(
10
),
105701
(
2009
).
8.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
(
5768
),
1758
1761
(
2006
).
9.
T.
Bartels-Rausch
,
V.
Bergeron
,
J. H. E.
Cartwright
,
R.
Escribano
,
J. L.
Finney
,
H.
Grothe
,
P. J.
Gutiérrez
,
J.
Haapala
,
W. F.
Kuhs
,
J. B. C.
Pettersson
,
S. D.
Price
,
C. I.
Sainz-Díaz
,
D. J.
Stokes
,
G.
Strazzulla
,
E. S.
Thomson
,
H.
Trinks
, and
N.
Uras-Aytemiz
,
Rev. Mod. Phys.
84
(
2
),
885
944
(
2012
).
10.
J.
Finney
,
Interdiscip. Sci. Rev.
29
(
4
),
339
351
(
2004
).
11.
V. F.
Petrenko
and
R. F.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
Oxford
,
1999
).
12.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
,
Chem. Rev.
116
(
13
),
7463
7500
(
2016
).
13.
O.
Mishima
,
Nature
384
(
6609
),
546
549
(
1996
).
14.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
52
),
21259
21264
(
2012
).
15.
T. L.
Malkin
,
B. J.
Murray
,
A. V.
Brukhno
,
J.
Anwar
, and
C. G.
Salzmann
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
4
),
1041
1045
(
2012
).
16.
T. L.
Malkin
,
B. J.
Murray
,
C. G.
Salzmann
,
V.
Molinero
,
S. J.
Pickering
, and
T. F.
Whale
,
Phys. Chem. Chem. Phys.
17
(
1
),
60
76
(
2015
).
17.
W. B.
Holzapfel
,
J. Chem. Phys.
56
(
2
),
712
(
1972
).
18.
A. F.
Goncharov
,
V. V.
Struzhkin
,
M. S.
Somayazulu
,
R. J.
Hemley
, and
H. K.
Mao
,
Science
273
(
5272
),
218
220
(
1996
).
19.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
,
Science
294
(
5550
),
2335
2338
(
2001
).
20.
A.
Falenty
,
T. C.
Hansen
, and
W. F.
Kuhs
,
Nature
516
(
7530
),
231
233
(
2014
).
21.
L.
Del Rosso
,
M.
Celli
, and
L.
Ulivi
,
Nat. Commun.
7
,
13394
(
2016
).
22.
B.
Kamb
,
W. C.
Hamilton
,
S. J.
LaPlaca
, and
A.
Prakash
,
J. Chem. Phys.
55
(
4
),
1934
1945
(
1971
).
23.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
,
Nature
299
(
5886
),
810
812
(
1982
).
24.
A. J.
Leadbetter
,
R. C.
Ward
,
J. W.
Clark
,
P. A.
Tucker
,
T.
Matsuo
, and
H.
Suga
,
J. Chem. Phys.
82
(
1
),
424
428
(
1985
).
25.
Y. Q.
Cai
,
H. K.
Mao
,
P. C.
Chow
,
J. S.
Tse
,
Y.
Ma
,
S.
Patchkovskii
,
J. F.
Shu
,
V.
Struzhkin
,
R. J.
Hemley
,
H.
Ishii
,
C. C.
Chen
,
I.
Jarrige
,
C. T.
Chen
,
S. R.
Shieh
,
E. P.
Huang
, and
C. C.
Kao
,
Phys. Rev. Lett.
94
(
2
),
025502
(
2005
).
26.
B.
Minceva-Sukarova
,
W. F.
Sherman
, and
G. R.
Wilkinson
,
J. Phys. C: Solid State Phys.
17
(
32
),
5833
5850
(
1984
).
27.
A. K.
Garg
,
Phys. Status Solidi
110
(
2
),
467
480
(
1988
).
28.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
314
(
6006
),
76
78
(
1985
).
29.
C. G.
Venkatesh
,
S. A.
Rice
, and
J. B.
Bates
,
J. Chem. Phys.
63
(
3
),
1065
1071
(
1975
).
30.
O.
Mishima
,
J. Chem. Phys.
100
(
8
),
5910
5912
(
1994
).
31.
T.
Strässle
,
S.
Klotz
,
G.
Hamel
,
M. M.
Koza
, and
H.
Schober
,
Phys. Rev. Lett.
99
(
17
),
175501
(
2007
).
32.
J. S.
Tse
,
D. D.
Klug
,
C. A.
Tulk
,
I.
Swainson
,
E. C.
Svensson
,
C. K.
Loong
,
V.
Shpakov
,
V. R.
Belosludov
,
R. V.
Belosludov
, and
Y.
Kawazoe
,
Nature
400
(
6745
),
647
649
(
1999
).
33.
V. I.
Levitas
,
Phys. Rev. Lett.
95
(
7
),
075701
(
2005
).
34.
M.
Song
,
H.
Yamawaki
,
H.
Fujihisa
,
M.
Sakashita
, and
K.
Aoki
,
Phys. Rev. B
68
(
2
),
014106
(
2003
).
35.
Y.
Yoshimura
,
S. T.
Stewart
,
M.
Somayazulu
,
H. K.
Mao
, and
R. J.
Hemley
,
J. Phys. Chem. B
115
(
14
),
3756
3760
(
2011
).
36.
S.
Klotz
,
J. M.
Besson
,
G.
Hamel
,
R. J.
Nelmes
,
J. S.
Loveday
, and
W. G.
Marshall
,
Nature
398
(
6729
),
681
684
(
1999
).
37.
J. M.
Besson
,
S.
Klotz
,
G.
Hamel
,
W. G.
Marshall
,
R. J.
Nelmes
, and
J. S.
Loveday
,
Phys. Rev. Lett.
78
(
16
),
3141
3144
(
1997
).
38.
D. D.
Klug
,
J. S.
Tse
,
Z.
Liu
,
X.
Gonze
, and
R. J.
Hemley
,
Phys. Rev. B
70
(
14
),
144113
(
2004
).
39.
E. S.
Gaffney
and
D. L.
Matson
,
Icarus
44
(
2
),
511
519
(
1980
).
40.
R. J.
Hemley
and
H. K.
Mao
, in
Properties of Earth and Planetary Materials at High Pressure and Temperature
, edited by
M. H.
Manghnani
and
T.
Yagi
(the American Geophysical Union or AGU,
1998
), Vol. 101, pp.
173
183
.
41.
L. E.
Bove
,
R.
Gaal
,
Z.
Raza
,
A.-A.
Ludl
,
S.
Klotz
,
A. M.
Saitta
,
A. F.
Goncharov
, and
P.
Gillet
,
Proc. Natl. Acad. Sci. U. S. A.
112
(
27
),
8216
8220
(
2015
).
42.
S. A.
Kattenhorn
and
L. M.
Prockter
,
Nat. Geosci.
7
(
10
),
762
767
(
2014
).
43.
T.
Strässle
,
A.
Caviezel
,
B.
Padmanabhan
,
V. Y.
Pomjakushin
, and
S.
Klotz
,
Phys. Rev. B
82
(
9
),
094103
(
2010
).
44.
C.
Lin
,
X.
Yong
,
J. S.
Tse
,
J. S.
Smith
,
S. V.
Sinogeikin
,
C.
Kenney-Benson
, and
G.
Shen
,
Phys. Rev. Lett.
119
(
13
),
135701
(
2017
).
45.
A. F.
Goncharov
,
Int. J. Spectrosc.
2012
,
617528
.
46.
A. F.
Goncharov
and
V. V.
Struzhkin
,
J. Raman Spectrosc.
34
(
7-8
),
532
548
(
2003
).
47.
A. F.
Goncharov
,
N.
Holtgrewe
,
G.
Qian
,
C.
Hu
,
A. R.
Oganov
,
M.
Somayazulu
,
E.
Stavrou
,
C. J.
Pickard
,
A.
Berlie
,
F.
Yen
,
M.
Mahmood
,
S. S.
Lobanov
,
Z.
Konôpková
, and
V. B.
Prakapenka
,
J. Chem. Phys.
142
(
21
),
214308
(
2015
).
48.
X.
Dong
,
A. R.
Oganov
,
A. F.
Goncharov
,
E.
Stavrou
,
S.
Lobanov
,
G.
Saleh
,
G.-R.
Qian
,
Q.
Zhu
,
C.
Gatti
,
V. L.
Deringer
,
R.
Dronskowski
,
X.-F.
Zhou
,
V. B.
Prakapenka
,
Z.
Konôpková
,
I. A.
Popov
,
A. I.
Boldyrev
, and
H.-T.
Wang
,
Nat. Chem.
9
(
5
),
440
445
(
2017
).
49.
C.
Ji
,
A. F.
Goncharov
,
V.
Shukla
,
N. K.
Jena
,
D.
Popov
,
B.
Li
,
J.
Wang
,
Y.
Meng
,
V. B.
Prakapenka
,
J. S.
Smith
,
R.
Ahuja
,
W.
Yang
, and
H.-k.
Mao
,
Proc. Natl. Acad. Sci. U. S. A.
114
(
14
),
3596
3600
(
2017
).
50.
D. D.
Ragan
,
R.
Gustavsen
, and
D.
Schiferl
,
J. Appl. Phys.
72
(
12
),
5539
5544
(
1992
).
51.
T. H. G.
Carr
,
J. J.
Shephard
, and
C. G.
Salzmann
,
J. Phys. Chem. Lett.
5
(
14
),
2469
2473
(
2014
).
52.
K.
Abe
and
T.
Shigenari
,
J. Chem. Phys.
134
(
10
),
104506
(
2011
).
53.
B.
Renker
,
Phys. Lett. A
30
(
9
),
493
494
(
1969
).
54.
R. J.
Hemley
,
A. P.
Jephcoat
,
H. K.
Mao
,
L. C.
Ming
, and
M. H.
Manghnani
,
Nature
334
(
6177
),
52
54
(
1988
).
55.
Y.
Suzuki
,
Y.
Takasaki
,
Y.
Tominaga
, and
O.
Mishima
,
Chem. Phys. Lett.
319
(
1
),
81
84
(
2000
).
56.
A. I.
Kolesnikov
,
J.
Li
,
S. F.
Parker
,
R. S.
Eccleston
, and
C. K.
Loong
,
Phys. Rev. B
59
(
5
),
3569
3578
(
1999
).
57.
B.
Schmid
and
W.
Schirmacher
,
Phys. Rev. Lett.
100
(
13
),
137402
(
2008
).
58.
E.
Stavrou
,
M.
Ahart
,
M. F.
Mahmood
, and
A. F.
Goncharov
,
Sci. Rep.
3
,
1290
(
2013
).
59.
S.
Klotz
,
G.
Hamel
,
J. S.
Loveday
,
R. J.
Nelmes
,
M.
Guthrie
, and
A. K.
Soper
,
Phys. Rev. Lett.
89
(
28
),
285502
(
2002
).
60.
S. J.
Laplaca
,
W. C.
Hamilton
,
B.
Kamb
, and
A.
Prakash
,
J. Chem. Phys.
58
(
2
),
567
580
(
1973
).
61.
J. S.
Tse
and
D. D.
Klug
,
Phys. Rev. Lett.
81
(
12
),
2466
2469
(
1998
).
62.
J. J.
Shephard
,
S.
Ling
,
G. C.
Sosso
,
A.
Michaelides
,
B.
Slater
, and
C. G.
Salzmann
,
J. Phys. Chem. Lett.
8
(
7
),
1645
1650
(
2017
).
63.
J. J.
Shephard
,
S.
Klotz
,
M.
Vickers
, and
C. G.
Salzmann
,
J. Chem. Phys.
144
(
20
),
204502
(
2016
).
64.
D. D.
Klug
,
Y. P.
Handa
,
J. S.
Tse
, and
E.
Whalley
,
J. Chem. Phys.
90
(
4
),
2390
2392
(
1989
).
65.
E. G.
Ponyatovsky
,
J. Phys.: Condens. Matter
15
(
36
),
6123
(
2003
).
66.
J.
Leliwa-Kopystyński
,
M.
Maruyama
, and
T.
Nakajima
,
Icarus
159
(
2
),
518
528
(
2002
).
67.
A. D.
Fortes
and
M.
Choukroun
,
Space Sci. Rev.
153
(
1
),
185
218
(
2010
).
68.
O.
Grasset
and
J.
Pargamin
,
Planet. Space Sci.
53
(
4
),
371
384
(
2005
).
69.
S.
Vance
,
M.
Bouffard
,
M.
Choukroun
, and
C.
Sotin
,
Planet. Space Sci.
96
(
Supplement C
),
62
70
(
2014
).
70.
F.
Sohl
,
T.
Spohn
,
D.
Breuer
, and
K.
Nagel
,
Icarus
157
(
1
),
104
119
(
2002
).
71.
J.
Saur
,
S.
Duling
,
L.
Roth
,
X.
Jia
,
D. F.
Strobel
,
P. D.
Feldman
,
U. R.
Christensen
,
K. D.
Retherford
,
M. A.
McGrath
,
F.
Musacchio
,
A.
Wennmacher
,
F. M.
Neubauer
,
S.
Simon
, and
O.
Hartkorn
,
J. Geophys. Res.: Space Phys.
120
(
3
),
1715
1737
, https://doi.org/10.1002/2014ja020778 (
2015
).
72.
W. B.
Hubbard
,
Planetary Interiors
(
Van Nostrand Reinhold
,
New York
,
1984
).
You do not currently have access to this content.