Understanding water solidification, especially in “No Man’s Land” (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields’ role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce “electro-freezing,” e/m fields exhibit the contrary – solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an “entropic trap,” which is ripe for industrial impacts in cryo-freezing, etc.

1.
O.
Mishima
and
H. E.
Stanley
, “
The relationship between liquid, supercooled and glassy water
,”
Nature
396
,
329
335
(
1998
).
2.
E. B.
Moore
and
V.
Molinero
, “
Ice-crystallisation in water’s no-man’s land
,”
J. Chem. Phys.
132
,
244504
(
2010
).
3.
T.
Li
,
D.
Donadio
, and
G.
Galli
, “
Ice nucleation at the nanoscale probes no man’s land of water
,”
Nat. Commun.
4
,
1887
(
2013
).
4.
A.
Haji-Akbari
and
P. G.
Debenedetti
, “
Direct calculation of ice homogeneous nucleation rate for a molecular model of water
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
34
),
10582
10588
(
2015
).
5.
E. B.
Moore
and
V.
Molinero
, “
Structural transformation in supercooled water controls the crystallization rate of ice
,”
Nature
479
,
506
508
(
2011
).
6.
T. L.
Malkin
,
B. J.
Murray
,
A. V.
Brukhno
,
J.
Anwar
, and
C. G.
Salzmann
, “
Structure of ice crystallized from supercooled water
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
1041
1045
(
2012
).
7.
A.
Manka
,
H.
Pathak
,
S.
Tanimura
,
J.
Wolk
,
R.
Strey
, and
B. E.
Wyslouzil
, “
Freezing water in no-man’s land
,”
Phys. Chem. Chem. Phys.
14
,
4505
4516
(
2012
).
8.
Y.
Bi
,
B.
Cao
, and
T.
Li
, “
Enhanced heterogeneous ice nucleation by special surface geometry
,”
Nat. Commun.
8
,
15372
(
2017
).
9.
P. K.
Nandi
,
C. J.
Burnham
,
Z.
Futera
, and
N. J.
English
,
ACS Earth Space Chem.
1
,
187
196
(
2017
).
10.
R. S.
Smith
and
B. D.
Kay
, “
The existence of supercooled liquid water at 150 K
,”
Nature
398
,
788
791
(
1999
).
11.
S. M.
McClure
,
E. T.
Barlow
,
M. A.
Akin
,
D. J.
Safarik
,
T. M.
Truskett
, and
C. B.
Mullins
, “
Transport in amorphous solid water films: Implications for self-diffusivity
,”
J. Phys. Chem. B
110
,
17987
17997
(
2006
).
12.
E.
Whalley
, “
Scheiner’s halo: Evidence for ice Ic in the atmosphere
,”
Science
211
,
389
390
(
1981
).
13.
A.
Tabazadeh
,
Y. S.
Djikaev
, and
H.
Reiss
, “
Surface crystallisation of supercooled water in clouds
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
15873
15878
(
2002
).
14.
W. C.
Thuman
and
E.
Robinson
, “
Studies of Alaskan ice-fog particles
,”
J. Meteorol.
11
,
151
156
(
1954
).
15.
E. J.
Jensen
,
O. B.
Toon
,
A.
Tabazadeh
,
G. W.
Sachse
,
B. E.
Anderson
,
K. R.
Chan
,
C. W.
Twohy
,
B.
Gandrud
,
S. M.
Aulenbach
,
A.
Hemysfield
 et al., “
Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS
,”
Geophys. Res. Lett.
25
,
1363
1366
, https://doi.org/10.1029/98gl00299 (
1998
).
16.
D. C.
Rogers
,
P. J.
DeMott
,
S.
Kreidenweis
, and
Y.
Chen
, “
Measurements of ice nucleating aerosols during SUCCESS
,”
Geophys. Res. Lett.
25
,
1383
1386
, https://doi.org/10.1029/97gl03478 (
1998
).
17.
A. J.
Heymsfield
and
L. M.
Miloshevich
, “
Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds
,”
J. Atmos. Sci.
50
,
2335
2353
(
1993
).
18.
J. L.
Finney
,
A.
Hallbrucker
,
I.
Kohl
,
A. K.
Soper
, and
D. T.
Bowron
, “
Structures of high and low density amorphous ice by neutron diffraction
,”
Phys. Rev. Lett.
88
,
225503
(
2002
).
19.
G. P.
Johari
,
G.
Fleissner
,
A.
Hallbrucker
, and
E.
Mayer
, “
Thermodynamic continuity between glassy and normal water
,”
J. Phys. Chem.
98
,
4719
4725
(
1994
).
20.
A.
Haji-Akbari
and
P. G.
Debenedetti
, “
Computational investigation of surface freezing in a molecular model of water
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
13
),
3316
3321
(
2017
).
21.
A.
Haji-Akbari
,
R. S.
DeFever
,
S.
Sarupria
, and
P. G.
Debenedetti
, “
Suppression of sub-surface freezing in free-standing thin films of a coarse-grained model of water
,”
Phys. Chem. Chem. Phys.
16
,
25916
25927
(
2014
).
22.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Metastable liquid-liquid transition in a molecular model of water
,”
Nature
510
,
385
388
(
2014
).
23.
E.
Xanthakis
,
A.
Le-Bail
, and
M.
Havet
, “
Freezing combined with electrical and magnetic disturbances
,” in
Emerging Technologies for Food Processing
, 2nd ed., edited by
Da-W.
Sun
(
Academic Press
,
2014
), Chap. 30, pp.
563
579
.
24.
N. J.
English
and
C. J.
Waldron
, “
Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges
,”
Phys. Chem. Chem. Phys.
17
,
12407
12440
(
2015
).
25.
I. M.
Svishchev
and
P. G.
Kusalik
, “
Crystallization of liquid water in a molecular dynamics simulation
,”
Phys. Rev. Lett.
73
,
975
978
(
1994
).
26.
I. M.
Svishchev
and
P. G.
Kusalik
, “
Electrofreezing of liquid water: A microscopic perspective
,”
J. Am. Chem. Soc.
118
,
649
654
(
1996
).
27.
R.
Radhakrishnan
and
B. L.
Trout
, “
Nucleation of crystalline phases of water in homogeneous and inhomogeneous environments
,”
Phys. Rev. Lett.
90
,
158301
(
2003
).
28.
J. Y.
Yan
and
G. N.
Patey
, “
Heterogeneous ice nucleation induced by electric fields
,”
J. Phys. Chem. Lett.
2
,
2555
2559
(
2011
).
29.
J. Y.
Yan
and
G. N.
Patey
, “
Molecular dynamics simulations of ice nucleation by electric fields
,”
J. Phys. Chem. A
116
,
7057
7064
(
2012
).
30.
J. Y.
Yan
and
G. N.
Patey
, “
Ice nucleation by electric surface fields of varying range and geometry
,”
J. Chem. Phys.
139
,
144501
(
2013
).
31.
J. Y.
Yan
,
S. D.
Overduin
, and
G. N.
Patey
, “
Understanding electrofreezing in water simulations
,”
J. Chem. Phys.
141
,
074501
(
2014
).
32.
N. J.
English
and
J. M. D.
MacElroy
, “
Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields
,”
J. Chem. Phys.
119
(
22
),
11806
11813
(
2003
).
33.
N. J.
English
and
J. M. D.
MacElroy
, “
Molecular dynamics simulations of microwave heating of water
,”
J. Chem. Phys.
118
(
4
),
1589
1592
(
2003
).
34.
N. J.
English
,
P. G.
Kusalik
, and
S.
Woods
, “
Coupling of translational and rotational motion in chiral liquids in external electromagnetic and circularly polarised electric fields
,”
J. Chem. Phys.
136
,
094508
(
2012
).
35.
R.
Reale
,
N. J.
English
,
P.
Marracino
,
M.
Liberti
, and
F.
Apollonio
, “
Translational and rotational diffusive motion in liquid water in square-wave time-varying electric fields
,”
Chem. Phys. Lett.
582
,
60
65
(
2013
).
36.
E. D.
Giudice
,
G.
Preparata
, and
G.
Vitiello
, “
Water as a free electric dipole laser
,”
Phys. Rev. Lett.
61
,
1085
(
1988
).
37.
M.
Avena
,
P.
Marracino
,
M.
Liberti
,
F.
Apollonio
, and
N. J.
English
, “
Communication: Influence of nanosecond-pulsed electric fields on water and its subsequent relaxation: Dipolar effects and debunking memory
,”
J. Chem. Phys.
142
,
141101
(
2015
).
38.
T. H.
Jackson
,
A.
Ungan
,
J. K.
Critser
, and
D. Y.
Gao
, “
Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation
,”
Cryobiology
34
,
363
372
(
1997
).
39.
B. A.
Garetz
,
J.
Aber
,
N.
Goddard
,
R.
Young
, and
A. S.
Myerson
, “
Non-photochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions
,”
Phys. Rev Lett.
77
,
3475
3476
(
1996
).
40.
M.
Anese
,
L.
Manzocco
,
A.
Panozzo
,
P.
Beraldo
,
M.
Foschia
, and
M. C.
Nicoll
, “
Effect of radiofrequency assisted freezing on meat microstructure and quality
,”
Food Res. Int
.
46
,
50
54
(
2012
).
41.
N. J.
English
and
J. M. D.
MacElroy
, “
Theoretical studies of the kinetics of methane hydrate crystallization in external electromagnetic fields
,”
J. Chem. Phys.
120
,
10247
10256
(
2004
).
42.
A.
Rojey
, U.S. patent no. 5625178 (29 April
1997
).
43.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
44.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
45.
G.
Roussy
,
K.
Agbossou
,
B.
Dichtel
, and
J.-M.
Thiebaut
, “
High electromagnetic field measurements in industrial applicators by using an optically modulated sensor
,”
J. Microwave Power Electromagn. Energy
27
,
164
170
(
1992
).
46.
J.
Thuéry
,
Microwaves: Industrial, Scientific and Medical Applications
(
Artech
,
Norwood, MA, USA
,
1992
).
47.
A. C.
Metaxas
and
R. J.
Meredith
,
Industrial Microwave Heating
(
Peter Peregrinus
,
London
,
1983
).
48.
N. J.
English
, “
Molecular dynamics simulations of microwave effects on water using different long-range electrostatics methodologies
,”
Mol. Phys.
104
,
243
253
(
2006
).
49.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
,
55
57
(
1996
).
50.
N. J.
English
and
J. M. D.
Macelroy
, “
Atomistic simulations of liquid water using Lenker electrostatics
,”
Mol. Phys.
100
,
3753
3769
(
2002
).
51.
R.
Reale
,
N. J.
English
,
P.
Marracino
,
M.
Liberti
, and
F.
Apollonio
, “
Dipolar response and hydrogen-bond kinetics in liquid water in square-wave time-varying electric fields
,”
Mol. Phys.
112
,
1870
1878
(
2014
).
52.
J. D.
Sherwood
, “
The deformation of a fluid drop in an electric field: A slender-body analysis
,”
J. Phys. A: Math. Gen.
24
,
4047
4053
(
1991
).
53.
W. D.
Luedtke
,
J.
Gao
, and
U.
Landman
, “
Dielectric nanodroplets: Structure, stability, thermodynamics, shape transitions and electrocrystallization in applied electric fields
,”
J. Phys. Chem. C
115
,
20343
20358
(
2011
).
54.
P.
Geiger
,
C.
Dellago
,
M.
Macher
,
C.
Franchini
,
G.
Kresse
,
J.
Bernard
,
J. N.
Stern
, and
T.
Loerting
, “
Proton ordering of cubic ice Ic: Spectroscopy and computer simulations
,”
J. Phys. Chem. C
118
,
10989
10997
(
2014
).
55.
E. B.
Moore
,
E. D. L.
Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
, “
Freezing, melting and structure of ice in a hydrophilic nanopore
,”
Phys. Chem. Chem. Phys.
12
,
4124
4134
(
2010
).
56.
J.
Russo
and
H.
Tanaka
, “
Understanding water’s anomalies with locally favoured structures
,”
Nat. Commun.
5
,
3556
(
2014
).
57.
A. B. L.
Bosio
and
A. D. M.
Oumezzine
, “
Structure of high-density amorphous water. I. X-ray diffraction study
,”
J. Phys. Chem.
87
,
2225
2230
(
1987
).
58.
M. C.
Bellissent-Funel
and
J. T. L.
Bosio
, “
Structure of high-density amorphous water. II. Neutron scattering study
,”
J. Chem. Phys.
87
,
2231
2235
(
1987
).
59.
D. T.
Bowron
,
J. L.
Finney
,
A.
Hallbrucker
,
I.
Kohl
,
T.
Loerting
, and
M. A. K.
Soper
, “
The local and intermediate range structures of the five amorphous ices at 80 K and ambient pressure: A Faber-Ziman and Bhatia-Thornton analysis
,”
J. Chem. Phys.
125
,
194502
(
2006
).
60.
J. A.
Sellberg
 et al., “
Ultrafast x-ray probing of water structure below the homogeneous ice nucleation temperature
,”
Nature
510
,
381
384
(
2014
).
61.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
62.
J.
Wong
,
D. A.
Jahn
, and
N.
Giovambattista
, “
Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model
,”
J. Chem. Phys.
43
,
074501
(
2015
).
63.
K.
Winkel
,
D. T.
Bowron
,
T.
Loerting
,
E.
Mayer
, and
J. L.
Finney
, “
Relaxation effects in low density amorphous ice: Two distinct structural states observed by neutron diffraction
,”
J. Chem. Phys.
130
,
204502
(
2009
).
64.
D.
Duft
and
T.
Leisner
, “
Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets
,”
Atmos. Chem. Phys.
4
,
1997
2000
(
2004
).
65.
N. J.
English
and
J.
Tse
, “
Reversible pressure-induced crystal-amorphous structural transformation in ice Ih
,”
Chem. Phys. Lett.
609
,
54
58
(
2014
).
66.
R.
Martonak
,
D.
Donadio
, and
M.
Parrinello
, “
Evolution of the structure of amorphous ice: From low-density amorphous through high-density amorphous to very high-density amorphous ice
,”
J. Chem. Phys.
122
,
134501
(
2005
).
67.
J.
Alejandre
and
G. A.
Chapela
, “
The surface tension of TIP4p/2005 water model using the Ewald sums of the dispersion interactions
,”
J. Chem. Phys.
132
,
014701
(
2010
).

Supplementary Material

You do not currently have access to this content.