Glasses and gels are the two dynamically arrested, disordered states of matter. Despite their importance, their similarities and differences remain elusive, especially at high density, where until now it has been impossible to distinguish them. We identify dynamical and structural signatures which distinguish the gel and glass transitions in a colloidal model system of hard and “sticky” spheres. It has been suggested that “spinodal” gelation is initiated by gas-liquid viscoelastic phase separation to a bicontinuous network and the resulting densification leads to vitrification of the colloid-rich phase, but whether this phase has sufficient density for arrest is unclear [M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003) and P. J. Lu et al., Nature 435, 499–504 (2008)]. Moreover alternative mechanisms for arrest involving percolation have been proposed [A. P. R. Eberle et al., Phys. Rev. Lett. 106, 105704 (2011)]. Here we resolve these outstanding questions, beginning by determining the phase diagram. This, along with demonstrating that percolation plays no role in controlling the dynamics of our system, enables us to confirm spinodal decomposition as the mechanism for gelation. We are then able to show that gels can be formed even at much higher densities than previously supposed, at least to a volume fraction of ϕ = 0.59. Far from being networks, these gels apparently resemble glasses but are still clearly distinguished by the “discontinuous” nature of the transition and the resulting rapid solidification, which leads to the formation of inhomogeneous (with small voids) and far-from-equilibrium local structures. This is markedly different from the glass transition, whose continuous nature leads to the formation of homogeneous and locally equilibrated structures. We further reveal that the onset of the attractive glass transition in the form of a supercooled liquid is in fact interrupted by gelation. Our findings provide a general thermodynamic, dynamic, and structural basis upon which we can distinguish gelation from vitrification.

1.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
645
(
2011
).
2.
W. C. K.
Poon
, “
The physics of a model colloid-polymer mixture
,”
J. Phys.: Condens. Matter
14
,
R859
R880
(
2002
).
3.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
4.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
(
2015
).
5.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
6.
I.
Saika-Voivod
,
H. M.
King
,
P.
Tartaglia
,
F.
Sciortino
, and
E.
Zaccarelli
, “
Silica through the eyes of colloidal models-when glass is a gel
,”
J. Phys.: Condens. Matter
23
,
285101
(
2011
).
7.
S.
Biffi
,
R.
Cerbinoa
,
F.
Bomboi
,
E. M.
Paraboschia
,
R.
Asselta
,
F.
Sciortino
, and
T.
Bellini
, “
Phase behavior and critical activated dynamics of limited-valence DNA nanostars
,”
Proc. Nat. Acad. Sci. U. S. A
110
,
15633
15637
(
2013
).
8.
R.
Piazza
and
G.
Di Pietro
, “
Phase separation and gel-like structures in mixtures of colloids and surfactant
,”
Europhys. Lett.
28
,
445
450
(
1994
).
9.
N. A. M.
Verhaegh
,
D.
Asnaghi
,
H. N. W.
Lekkerkerker
,
M.
Giglio
, and
L.
Cipelletti
, “
Transient gelation by spinodal decomposition in colloid-polymer mixtures
,”
Phys. A
242
,
104
118
(
1997
).
10.
H.
Tanaka
, “
Viscoelastic model of phase separation in colloidal suspensions and emulsions
,”
Phys. Rev. E
59
,
6842
6852
(
1999
).
11.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
435
,
499
504
(
2008
).
12.
H.
Tanaka
and
Y.
Nishikawa
, “
Viscoelastic phase separation of protein solutions
,”
Phys. Rev. Lett.
95
,
078103
(
2005
).
13.
F.
Cardinaux
,
T.
Gibaud
,
A.
Stradner
, and
P.
Schurtenberger
, “
Interplay between spinodal decomposition and glass formation in proteins exhibiting short-range attractions
,”
Phys. Rev. Lett.
99
,
118301
(
2007
).
14.
T.
Gibaud
,
F.
Cardinaux
,
J.
Bergenholtz
,
A.
Stradner
, and
P.
Schurtenberger
, “
Phase separation and dynamical arrest for particles interacting with mixed potentials-the case of globular proteins revisited
,”
Soft Matter
7
,
857
860
(
2010
).
15.
R. M.
Hikmet
,
S.
Callister
, and
A.
Keller
, “
Thermoreversible gelation of atactic polystyrene: Phase transformation and morphology
,”
Polymer
29
,
1378
1388
(
1988
).
16.
H.
Tanaka
, “
Viscoelastic phase separation
,”
J. Phys.: Condens. Matter
12
,
R207
(
2000
).
17.
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castaneda-Priego
, “
Dynamical arrest transition in nanoparticle dispersions with short-range interactions
,”
Phys. Rev. Lett.
106
,
105704
(
2011
).
18.
M.
Kohl
,
R.
Capellmann
,
M.
Laurati
,
S.
Egelhaaf
, and
M.
Schmiedeberg
, “
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states
,”
Nat. Commun.
7
,
11817
(
2016
).
19.
M. A.
Miller
and
D.
Frenkel
, “
Competition of percolation and phase separation in a fluid of adhesive hard spheres
,”
Phys. Rev. Lett.
90
,
135702
(
2003
).
20.
K. N.
Pham
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Yielding of colloidal glasses
,”
Europhys. Lett.
75
,
624
630
(
2006
).
21.
N.
Koumakis
and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
22.
E.
Zaccarelli
and
W. C. K.
Poon
, “
Colloidal glasses and gels: The interplay of bonding and caging
,”
Proc. Nat. Acad. Sci. U. S. A
106
,
15203
15208
(
2009
).
23.
A.
Puertas
,
M.
Fuchs
, and
M.
Cates
, “
Comparative simulation study of colloidal gels and glasses
,”
Phys. Rev. Lett.
88
,
098301
(
2002
).
24.
G.
Brambilla
,
D.
El Masri
,
M.
Pierno
,
L.
Berthier
,
L.
Cipelletti
,
G.
Petekidis
, and
A. B.
Schofield
, “
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition
,”
Phys. Rev. Lett.
102
,
085703
(
2009
).
25.
M. E.
Cates
,
M.
Fuchs
,
K.
Kroy
,
W. C. K.
Poon
, and
A. M.
Puertas
, “
Theory and simulation of gelation, arrest and yielding in attracting colloids
,”
J. Phys.: Condens. Matter
16
,
S4861
(
2004
).
26.
C. J.
Dibble
,
M.
Kogan
, and
M. J.
Solomon
, “
Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity
,”
Phys. Rev. E.
74
,
041403
(
2006
).
27.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaïd
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
,
104
106
(
2002
).
28.
E.
Zaccarelli
,
G.
Foffi
,
K. A.
Dawson
,
S. V.
Buldyrev
,
F.
Sciortino
, and
P.
Tartaglia
, “
Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study
,”
Phys. Rev. E.
66
,
041402
(
2002
).
29.
N.
Simeonova
,
R.
Dullens
,
D.
Aarts
,
V. W. A.
de Villeneuve
,
H. N. W.
Lekkerkerker
, and
W.
Kegel
, “
Devitrification of colloidal glasses in real space
,”
Phys. Rev. E.
73
,
041401
(
2006
).
30.
P.
Charbonneau
and
D. R.
Reichman
, “
Dynamical heterogeneity and nonlinear susceptibility in supercooled liquids with short-range attraction
,”
Phys. Rev. Lett.
99
,
135701
(
2007
).
31.
Z.
Zhang
,
P. J.
Yunker
,
P.
Habdas
, and
A. G.
Yodh
, “
Cooperative rearrangement regions and dynamical heterogeneities in colloidal glasses with attractive versus repulsive interactions
,”
Phys. Rev. Lett.
107
,
208303
(
2011
).
32.
C. K.
Mishra
,
A.
Rangarajan
, and
R.
Ganapathy
, “
Two-step glass transition induced by attractive interactions in quasi-two-dimensional suspensions of ellipsoidal particles
,”
Phys. Rev. Lett.
110
,
118301
(
2013
).
33.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
, “
Dynamical heterogeneities close to a colloidal gel
,”
J. Chem. Phys.
121
,
2813
2822
(
2004
).
34.
A. J.
Archer
and
N. B.
Wilding
, “
Phase behavior of a fluid with competing attractive and repulsive interactions
,”
Phys. Rev. E
76
,
031501
(
2007
).
35.
H.
Sedgwick
,
S. U.
Egelhaaf
, and
W. C. K.
Poon
, “
Clusters and gels in systems of sticky particles
,”
J. Phys.: Condens. Matter
16
,
S4913
S4922
(
2004
).
36.
C. L.
Klix
,
C. P.
Royall
, and
H.
Tanaka
, “
Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions
,”
Phys. Rev. Lett.
104
,
165702
(
2010
).
37.
S.
Buzzaccaro
,
R.
Rusconi
, and
R.
Piazza
, “
‘Sticky’ hard spheres: Equation of state, phase diagram, and metastable gels
,”
Phys. Rev. Lett.
99
,
098301
(
2007
).
38.
J. M.
Olais-Gove
,
L.
López-Flores
, and
M.
Medina-Noyola
, “
Non-equilibrium theory of arrested spinodal decomposition
,”
J. Chem. Phys.
143
,
174505
(
2015
).
39.
A.
Ivlev
,
H.
Löwen
,
G. E.
Morfill
, and
C. P.
Royall
,
Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids
(
World Scientific Publishing Co., Singapore Scientific
,
2012
).
40.
M. N.
Bannerman
,
R.
Sargant
, and
L.
Lue
, “
Dynamo: A free O(n) general event-driven simulator
,”
J. Comput. Chem.
32
,
3329
3338
(
2011
).
41.
J.
Largo
,
M. A.
Miller
, and
F.
Sciortino
, “
The vanishing limit of the square-well fluid: The adhesive hard-sphere model as a reference system
,”
J. Chem. Phys.
128
,
134513
(
2008
).
42.
C. P.
Royall
,
A. A.
Louis
, and
H.
Tanaka
, “
Measuring colloidal interactions with confocal microscopy
,”
J. Chem. Phys.
127
,
044507
(
2007
).
43.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
, “
Effective interactions, structure, and isothermal compressibility of colloidal suspensions
,”
J. Chem. Phys.
113
,
4799
4807
(
2000
).
44.
C. P.
Royall
,
W. C. K.
Poon
, and
E. R.
Weeks
, “
In search of colloidal hard spheres
,”
Soft Matter
9
,
17
27
(
2013
).
45.
G.
Bosma
,
C.
Pathmamanoharan
,
E. H. A.
de Hoog
,
W. K.
Kegel
,
A.
van Blaaderen
, and
H. N. W.
Lekkerkerker
, “
Preparation of monodisperse, fluorescent pmma-latex colloids by dispersion polymerization
,”
J. Colloid Interface Sci.
245
,
292
300
(
2002
).
46.
D.
Zerrouki
,
B.
Rotenberg
,
S.
Abramson
,
J.
Baudry
,
C.
Goubault
,
F.
Leal-Calderon
,
D. J.
Pine
, and
J.
Bibette
, “
Preparation of doublet, triangular, and tetrahedral colloidal clusters by controlled emulsification
,”
Langmuir
22
,
57
62
(
2006
).
47.
S.
Taylor
,
R.
Evans
, and
C. P.
Royall
, “
Temperature as an external field for colloid-polymer mixtures: ‘Quenching’ by heating and ‘melting’ by cooling
,”
J. Phys.: Condens. Matter
24
,
464128
(
2012
).
48.
G.
Foffi
,
C. D.
Michele
,
F.
Sciortino
, and
P.
Tartaglia
, “
Scaling of dynamics with the range of interaction in short-range attractive colloids
,”
Phys. Rev. Lett.
94
,
078301
(
2005
).
49.
A.
Ninarello
,
L.
Berthier
, and
D.
Coslovich
, “
Models and algorithms for the next generation of glass transition studies
,”
Phys. Rev. X
7
,
021039
(
2017
).
50.
W. C. K.
Poon
,
F.
Renth
,
R.
Evans
,
D.
Fairhurst
,
M. E.
Cates
, and
P. N.
Pusey
, “
Colloid-polymer mixtures at triple coexistence: Kinetic maps from free-energy landscapes
,”
Phys. Rev. Lett.
83
,
1239
1242
(
1999
).
51.
K. G.
Soga
,
J. R.
Melrose
, and
R. C.
Ball
, “
Metastable states and the kinetics of colloid phase separation
,”
J. Chem. Phys.
110
,
2280
2288
(
1999
).
52.
F.
Renth
,
W. C. K.
Poon
, and
R. M. L.
Evans
, “
Phase transition kinetics in colloid-polymer mixtures at triple coexistence: Kinetic maps from free-energy landscapes
,”
Phys. Rev. E
64
,
031402
(
2001
).
53.
A.
Fortini
,
E.
Sanz
, and
M.
Dijkstra
, “
Crystallization and gelation in colloidal systems with short-ranged attractive interactions
,”
Phys. Rev. E
78
,
041402
(
2008
).
54.
C. P.
Royall
and
A.
Malins
, “
The role of quench rate in colloidal gels
,”
Faraday Discuss.
158
,
301
311
(
2012
).
55.
J.
Sabin
,
A. E.
Bailey
,
G.
Espinosa
, and
B. J.
Frisken
, “
Crystal-arrested phase separation
,”
Phys. Rev. Lett.
109
,
195701
(
2012
).
56.
T. H.
Zhang
,
J.
Klok
,
R. H.
Tromp
,
J.
Groenewold
, and
W. K.
Kegel
, “
Non-equilibrium cluster states in colloids with competing interactions
,”
Soft Matter
8
,
667
672
(
2012
).
57.
H.
Tsurusawa
,
J.
Russo
,
M.
Leocmach
, and
H.
Tanaka
, “
Formation of porous crystals via viscoelastic phase separation
,”
Nat. Mater.
16
,
1022
1028
(
2017
).
58.
R.
Rice
,
R.
Roth
, and
C. P.
Royall
, “
Polyhedral colloidal? rocks: Low-dimensional networks
,”
Soft Matter
8
,
1163
1167
(
2012
).
59.
C.
Royall
,
D. G. A. L.
Aarts
, and
H.
Tanaka
, “
Fluid structure in colloid-polymer mixtures: The competition between electrostatics and depletion
,”
J. Phys.: Condens. Matter
17
,
S3401
S3408
(
2005
).
60.
M. G.
Noro
and
D.
Frenkel
, “
Extended corresponding-states behavior for particles with variable range attractions
,”
J. Chem. Phys.
113
,
2941
2944
(
2000
).
61.
A. A.
Louis
,
P. G.
Bolhuis
,
E. J.
Meijer
, and
J. P.
Hansen
, “
Polymer induced depletion potentials in polymer-colloid mixtures
,”
J. Chem. Phys.
117
,
1893
1907
(
2002
).
62.
W. C. K.
Poon
,
E. R.
Weeks
, and
C. P.
Royall
, “
On measuring colloidal volume fractions
,”
Soft Matter
8
,
21
30
(
2012
).
63.
E.
Zaccarelli
,
P. J.
Lu
,
F.
Ciulla
,
D. A.
Weitz
, and
F.
Sciortino
, “
Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures
,”
J. Phys.: Condens. Matter
20
,
494242
(
2008
).
64.
A.
Malins
,
S. R.
Williams
,
J.
Eggers
, and
C. P.
Royall
, “
Identification of structure in condensed matter with the topological cluster classification
,”
J. Chem. Phys.
139
,
234506
(
2013
).
65.
C. P.
Royall
,
S. R.
Williams
,
T.
Ohtsuka
, and
H.
Tanaka
, “
Direct observation of a local structural mechanism for dynamic arrest
,”
Nat. Mater.
7
,
556
561
(
2008
).
66.
J.
Taffs
,
S. R.
Williams
,
H.
Tanaka
, and
C. P.
Royall
, “
Structure and kinetics in the freezing of nearly hard spheres
,”
Soft Matter
9
,
297
305
(
2013
).
67.
E.
Sanz
,
C.
Valeriani
,
W. C. K.
Zaccarelli
,
E.
Poon
,
P. N.
Pusey
, and
M. E.
Cates
, “
Crystallization mechanism of hard sphere glasses
,”
Phys. Rev. Lett.
106
,
215701
(
2011
).
68.
M.
Godogna
,
A.
Malins
,
S. R.
Williams
, and
C. P.
Royall
, “
The local structure of the gas-liquid interfaces
,”
Mol. Phys.
109
,
1393
1402
(
2010
).
69.

Comment made by Mark Miller: The method developed by Miller and Frenkel modeled the Baxter model, the limit of an infinitely thin, infinitely deep attractive well. Those authors focussed on the critical point and surrounding region. It is possible that the specialised technique they developed to successfully capture the limiting case of the Baxter model did not fully sample dense configurations leading to an underestimation of the liquid density, 2015.

70.
Y.-L.
Chen
and
K. S.
Schweizer
, “
Microscopic theory of gelation and elasticity in polymer-particle suspensions
,”
J. Chem. Phys.
120
,
7212
7222
(
2004
).
71.
L.
Berthier
and
W.
Kob
, “
The Monte Carlo dynamics of a binary lennard-jones glass-forming mixture
,”
J. Phys.: Condens. Matter
19
,
205130
(
2007
).
72.
A.
Furukawa
and
H.
Tanaka
, “
Key role of hydrodynamic interactions in colloidal gelation
,”
Phys. Rev. Lett.
104
,
245702
(
2010
).
73.
C. P.
Royall
,
J.
Eggers
,
A.
Furukawa
, and
H.
Tanaka
, “
Probing colloidal gels at multiple length scales: The role of hydrodynamics
,”
Phys. Rev. Lett.
114
,
258302
(
2015
).
74.
C. P.
Royall
and
S. R.
Williams
, “
C60: The first one-component gel?
,”
J. Phys. Chem. B
115
,
7288
7293
(
2011
).
75.
G.
Foffi
,
C.
De Michele
,
F.
Sciortino
, and
P.
Tartaglia
, “
Arrested phase separation in a short-ranged attractive colloidal system: A numerical study
,”
J. Chem. Phys.
122
,
224903
(
2005
).
76.
C. P.
Royall
and
W.
Kob
, “
Locally favoured structures and dynamic length scales in a simple glass-former
,”
J. Stat. Mech.: Theory Exp.
2017
,
024001
.
77.
V.
Prasad
,
V.
Trappe
,
A. D.
Dinsmore
,
P. N.
Segre
,
L.
Cipelletti
, and
D. A.
Weitz
, “
Universal features of the fluid to solid transition for attractive colloidal particles
,”
Faraday Discuss.
123
,
1
12
(
2003
).
78.
H.
Tanaka
,
J.
Meunier
, and
D.
Bonn
, “
Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels
,”
Phys. Rev. E
69
,
031404
(
2004
).
79.
D.
Levis
and
L.
Berthier
, “
Clustering and heterogeneous dynamics in a kinetic monte carlo model of self-propelled hard disks
,”
Phys. Rev. E
89
,
062301
(
2014
).
80.
D.
Fusco
and
P.
Charbonneau
, “
Crystallization of asymmetric patchy models for globular proteins in solution
,”
Phys. Rev. E
88
,
012721
(
2013
).
81.
E.
Flenner
,
H.
Staley
, and
G.
Szamel
, “
Universal features of dynamic heterogeneity in supercooled liquids
,”
Phys. Rev. Lett.
112
,
097801
(
2014
).
82.
A.
Vrij
, “
Phase-transition phenomena in colloidal systems with attractive and repulsive particle interactions
,”
Faraday Discuss.
90
,
31
40
(
1990
).
83.
S.
Manley
,
H. M.
Wyss
,
K.
Miyazaki
,
J. C.
Conrad
,
V.
Trappe
,
L. J.
Kaufman
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Glasslike arrest in spinodal decomposition as a route to colloidal gelation
,”
Phys. Rev. Lett.
95
,
238302
(
2005
).
84.
S.
Griffiths
,
F.
Turci
, and
C. P.
Royall
, “
Local structure of percolating gels at very low volume fractions
,”
J. Chem. Phys.
146
,
014905
(
2017
).
You do not currently have access to this content.