We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

1.
Carbon Nanotubes, Synthesis, Structure, Properties, and Applications
, Topics in Applied Physics, 1st ed., edited by
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P.
Avouris
(
Springer-Verlag Berlin Heidelberg
,
2001
).
2.
S.
Torquato
,
Random Heterogeneous Materials
(
Springer
,
New York
,
2002
), Vol. 16.
3.
W.-S.
Kim
,
H. S.
Song
,
B. O.
Lee
,
K.-H.
Kwon
,
Y.-S.
Lim
, and
M.-S.
Kim
,
Macromol. Res.
10
,
253
(
2002
).
4.
T.
Shah
and
J.
Morber
, “
CNS-shielded wires
,” U.S. patent 9,111,658 (18 August
2015
).
5.
C.
Koning
,
M.
Hermant
, and
N.
Grossiord
,
Polymer Carbon Nanotube Composites: The Polymer Latex Concept
(
Pan Stanford
,
2012
).
6.
T.
DeSimone
,
S.
Demoulini
, and
R. M.
Stratt
,
J. Chem. Phys.
85
,
391
(
1986
).
7.
B.
Vigolo
,
C.
Coulon
,
M.
Maugey
,
C.
Zakri
, and
P.
Poulin
,
Science
309
,
920
(
2005
).
8.
H.
Deng
,
R.
Zhang
,
E.
Bilotti
,
J.
Loos
, and
T.
Peijs
,
J. Appl. Polym. Sci.
113
,
742
(
2009
).
9.
A. V.
Kyrylyuk
and
P.
van der Schoot
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
8221
(
2008
).
10.
R. H. J.
Otten
and
P.
van der Schoot
,
Phys. Rev. Lett.
108
,
088301
(
2012
).
11.
N.
Grossiord
,
J.
Loos
,
O.
Regev
, and
C. E.
Koning
,
Chem. Mater.
18
,
1089
(
2006
).
12.
I.
Balberg
,
C. H.
Anderson
,
S.
Alexander
, and
N.
Wagner
,
Phys. Rev. B
30
,
3933
(
1984
).
13.
P.
Longone
,
P. M.
Centres
, and
A. J.
Ramirez-Pastor
,
Phys. Rev. E
85
,
011108
(
2012
).
14.
A. P.
Chatterjee
,
J. Chem. Phys.
140
,
204911
(
2014
).
15.
F.
Du
,
J. E.
Fischer
, and
K. I.
Winey
,
Phys. Rev. B
72
,
121404
(
2005
).
16.
S. S.
Rahatekar
,
M.
Hamm
,
M. S. P.
Shaffer
, and
J. A.
Elliott
,
J. Chem. Phys.
123
,
134702
(
2005
).
17.
S. I.
White
,
B. A.
DiDonna
,
M.
Mu
,
T. C.
Lubensky
, and
K. I.
Winey
,
Phys. Rev. B
79
,
024301
(
2009
).
18.
S.
Kale
,
F. A.
Sabet
,
I.
Jasiuk
, and
M.
Ostoja-Starzewski
,
J. Appl. Phys.
120
,
045105
(
2016
).
19.
20.
R. H. J.
Otten
and
P.
van der Schoot
,
Phys. Rev. Lett.
103
,
225704
(
2009
).
21.
R. H. J.
Otten
and
P.
van der Schoot
,
J. Chem. Phys.
134
,
094902
(
2011
).
22.
A. P.
Chatterjee
,
J. Chem. Phys.
132
,
224905
(
2010
).
23.
B.
Nigro
,
C.
Grimaldi
,
P.
Ryser
,
A. P.
Chatterjee
, and
P.
van der Schoot
,
Phys. Rev. Lett.
110
,
015701
(
2013
).
24.
H.
Meyer
,
P.
van der Schoot
, and
T.
Schilling
,
J. Chem. Phys.
143
,
044901
(
2015
).
25.
S.
Kale
,
F. A.
Sabet
,
I.
Jasiuk
, and
M.
Ostoja-Starzewski
,
J. Appl. Phys.
118
,
154306
(
2015
).
26.
E.
Tkalya
,
M.
Ghislandi
,
R.
Otten
,
M.
Lotya
,
A.
Alekseev
,
P.
van der Schoot
,
J.
Coleman
,
G.
de With
, and
C.
Koning
,
ACS Appl. Mater. Interfaces
6
,
15113
(
2014
), .
27.
G.
Ambrosetti
,
C.
Grimaldi
,
I.
Balberg
,
T.
Maeder
,
A.
Danani
, and
P.
Ryser
,
Phys. Rev. B
81
,
155434
(
2010
).
28.
S. S.
Rahatekar
,
M. S.
Shaffer
, and
J. A.
Elliott
,
Compos. Sci. Technol.
70
,
356
(
2010
).
29.
A. L. R.
Bug
,
S. A.
Safran
, and
I.
Webman
,
Phys. Rev. B
33
,
4716
(
1986
).
30.
A.
Coniglio
,
U.
De Angelis
,
A.
Forlani
, and
G.
Lauro
,
J. Phys. A: Math. Gen.
10
,
219
(
1977
).
31.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
Burlington
,
2006
).
32.
R.
Fantoni
,
D.
Gazzillo
,
A.
Giacometti
,
M. A.
Miller
, and
G.
Pastore
,
J. Chem. Phys.
127
,
234507
(
2007
).
33.
T.
DeSimone
,
R. M.
Stratt
, and
S.
Demoulini
,
Phys. Rev. Lett.
56
,
1140
(
1986
).
34.
A. V.
Kyrylyuk
,
M. C.
Hermant
,
T.
Schilling
,
B.
Klumperman
,
C. E.
Koning
, and
P.
van der Schoot
,
Nat. Nanotechnol.
6
,
364
369
(
2011
).
35.
T.
Schilling
,
M. A.
Miller
, and
P.
van der Schoot
,
Europhys. Lett.
111
,
56004
(
2015
).
36.
L.
Onsager
,
Ann. N. Y. Acad. Sci.
51
,
627
(
1949
).
37.
I.
Balberg
,
N.
Binenbaum
, and
N.
Wagner
,
Phys. Rev. Lett.
52
,
1465
(
1984
).
38.
K.
Bubke
,
H.
Gnewuch
,
M.
Hempstead
,
J.
Hammer
, and
M. L. H.
Green
,
Appl. Phys. Lett.
71
,
1906
(
1997
).
39.
K.
Yamamoto
,
S.
Akita
, and
Y.
Nakayama
,
J. Phys. D: Appl. Phys.
31
,
L34
(
1998
).
40.
X. Q.
Chen
,
T.
Saito
,
H.
Yamada
, and
K.
Matsushige
,
Appl. Phys. Lett.
78
,
3714
(
2001
).
41.
C.
Martin
,
J.
Sandler
,
A.
Windle
,
M.-K.
Schwarz
,
W.
Bauhofer
,
K.
Schulte
, and
M.
Shaffer
,
Polymer
46
,
877
(
2005
).
42.
M. S.
Brown
,
J. W.
Shan
,
C.
Lin
, and
F. M.
Zimmermann
,
Appl. Phys. Lett.
90
,
203108
(
2007
).
43.
Y.-F.
Zhu
,
C.
Ma
,
W.
Zhang
,
R.-P.
Zhang
,
N.
Koratkar
, and
J.
Liang
,
J. Appl. Phys.
105
,
054319
(
2009
).
44.
M.
Fujiwara
,
E.
Oki
,
M.
Hamada
,
Y.
Tanimoto
,
I.
Mukouda
, and
Y.
Shimomura
,
J. Phys. Chem. A
105
,
4383
(
2001
).
45.
S.
Zaric
,
G. N.
Ostojic
,
J.
Kono
,
J.
Shaver
,
V. C.
Moore
,
R. H.
Hauge
,
R. E.
Smalley
, and
X.
Wei
,
Nano Lett.
4
,
2219
(
2004
).
46.
Q.
Wang
,
J.
Dai
,
W.
Li
,
Z.
Wei
, and
J.
Jiang
,
Compos. Sci. Technol.
68
,
1644
(
2008
).
47.
O. F.
Aguilar Gutierrez
and
A. D.
Rey
,
Langmuir
32
,
11799
(
2016
).
48.
J. T.
Wescott
,
P.
Kung
, and
A.
Maiti
,
Appl. Phys. Lett.
90
,
033116
(
2007
).
49.
J. P. F.
Lagerwall
and
G.
Scalia
,
J. Mater. Chem.
18
,
2890
(
2008
).
50.
J.
Lagerwall
and
G.
Scalia
,
Liquid Crystals with Nano and Microparticles
, Series in Soft Condensed Matter (
World Scientific Publishing Company Pte Limited
,
2016
).
51.
P.
van der Schoot
,
V.
Popa-Nita
, and
S.
Kralj
,
J. Phys. Chem. B
112
,
4512
(
2008
).
52.
C. E.
Alvarez
and
S. H. L.
Klapp
,
Soft Matter
8
,
7480
(
2012
).
53.
C. E.
Alvarez
and
S. H. L.
Klapp
,
Soft Matter
9
,
8761
(
2013
).
54.
A. R.
Khokhlov
and
A. N.
Semenov
,
Macromolecules
15
,
1272
(
1982
).
55.
M.
Doi
and
S.
Edwards
,
The Theory of Polymer Dynamics
, International Series of Monographs on Physics (
Clarendon Press
,
1988
).
56.
F.
Brochard
and
P. G.
de Gennes
,
J. Phys.
31
,
691
(
1970
).
57.
L. X.
Benedict
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
52
,
8541
(
1995
).
58.
J.
Venermo
and
A.
Sihvola
,
J. Electrost.
63
,
101
(
2005
).
59.
G. T.
Keep
and
R.
Pecora
,
Macromolecules
18
,
1167
(
1985
).
60.
S. E.
Chung
and
I. J.
Chung
,
Polym. Bull.
21
,
105
(
1989
).
61.
J. F.
Maguire
,
J. P.
McTague
, and
F.
Rondelez
,
Phys. Rev. Lett.
45
,
1891
(
1980
).
62.
P. G.
van Rhee
,
P.
Zijlstra
,
T. G. A.
Verhagen
,
J.
Aarts
,
M. I.
Katsnelson
,
J. C.
Maan
,
M.
Orrit
, and
P. C. M.
Christianen
,
Phys. Rev. Lett.
111
,
127202
(
2013
).
63.
J.
Škvor
,
I.
Nezbeda
,
I.
Brovchenko
, and
A.
Oleinikova
,
Phys. Rev. Lett.
99
,
127801
(
2007
).
64.
M. A.
Miller
,
J. Chem. Phys.
131
,
066101
(
2009
).
65.
T.
Schilling
,
S.
Jungblut
, and
M. A.
Miller
,
Phys. Rev. Lett.
98
,
108303
(
2007
).
66.
J.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
1998
).
67.
T.
Odijk
,
Macromolecules
21
,
3511
(
1988
).
68.
Wolfram Research, Inc.
,
Mathematica 11.0
(
Wolfram Research, Inc.
,
Champaign, Illinios
,
2016
).
69.
Y. A.
Nastishin
,
H.
Liu
,
T.
Schneider
,
V.
Nazarenko
,
R.
Vasyuta
,
S. V.
Shiyanovskii
, and
O. D.
Lavrentovich
,
Phys. Rev. E
72
,
041711
(
2005
).
70.
V. R.
Horowitz
,
L. A.
Janowitz
,
A. L.
Modic
,
P. A.
Heiney
, and
P. J.
Collings
,
Phys. Rev. E
72
,
041710
(
2005
).
71.
N.
Ould-Moussa
,
C.
Blanc
,
C.
Zamora-Ledezma
,
O. D.
Lavrentovich
,
I. I.
Smalyukh
,
M. F.
Islam
,
A.
Yodh
,
M.
Maugey
,
P.
Poulin
,
E.
Anglaret
, and
M.
Nobili
,
Liq. Cryst.
40
,
1628
(
2013
).
72.
G.
Scalia
,
C.
von Buhler
,
C.
Hagele
,
S.
Roth
,
F.
Giesselmann
, and
J. P. F.
Lagerwall
,
Soft Matter
4
,
570
(
2008
).
74.
I.
Dierking
,
G.
Scalia
, and
P.
Morales
,
J. Appl. Phys.
97
,
044309
(
2005
).
75.
M. D.
Lynch
and
D. L.
Patrick
,
Nano Lett.
2
,
1197
(
2002
).
76.
J. P.
Straley
,
Mol. Cryst. Liq. Cryst.
24
,
7
(
1973
).
77.
B.
Mulder
and
D.
Frenkel
,
Mol. Phys.
55
,
1193
(
1985
).
78.
79.
D.
Frenkel
,
J. Phys. Chem.
91
,
4912
(
1987
).
80.
M.
Dixit
,
H.
Meyer
, and
T.
Schilling
,
Phys. Rev. E
93
,
012116
(
2016
).

Supplementary Material

You do not currently have access to this content.