To understand the enhanced effects and new hydrogen absorption properties of metal nanoparticles, we theoretically investigated the hydrogen absorption in Pd nanoparticles, adopting the Pd405 model of ca. 2.5 nm by using density functional theory. Pd405 showed inhomogeneous geometric features, especially near the surface region. The hydrogen absorptions in octahedral (O) and tetrahedral (T) sites near the core region were stable and unstable, respectively, similar to the Pd bulk. We clearly demonstrated the possibility of hydrogen absorption in T sites near the surface of Pd405. The flexible volume change and the difference in hydrogen position relative to the center of mass of the T site that we observed are important factors for stable hydrogen absorption in T sites of Pd nanoparticles. In addition, we discuss the differences in hydrogen diffusion mechanisms in the core and near surface regions, based on the stability of hydrogen absorption in O and T sites.

1.
B. A.
Adams
and
A.
Chen
,
Mater. Today
14
,
282
(
2011
).
2.
L. L.
Jewell
and
B. H.
Davis
,
Appl. Catal., A
310
,
1
(
2006
).
3.
R. L.
Farrauto
,
M. C.
Hobson
,
T.
Kennelly
, and
E. M.
Waterman
,
Appl. Catal., A
81
,
227
(
1992
).
4.
S.
Uemiya
,
Y.
Kude
,
K.
Sugino
,
N.
Sato
,
T.
Matsuda
, and
E.
Kikuchi
,
Chem. Lett.
17
,
1687
(
1988
).
5.
F. A.
Lewis
,
Platinum Metals Rev.
26
,
121
(
1982
).
6.
S.
Majorowski
and
B.
Baranowski
,
J. Phys. Chem. Solids
43
,
1119
(
1982
).
7.
N. S.
Ho
and
F. D.
Manchester
,
J. Chem. Phys.
51
,
5437
(
1969
).
8.
J. E.
Worsham
,
M. K.
Wilkinson
, and
C. G.
Shull
,
J. Phys. Chem. Solids
3
,
303
(
1957
).
9.
F. D.
Manchester
,
A.
San-Martin
, and
J. M.
Pitre
,
J. Phase Equilib.
15
,
62
(
1994
).
10.
V. A.
Vons
,
H.
Leegwater
,
W. J.
Legerstee
,
S. W.
Eijt
, and
A.
Schmidt-Ott
,
Int. J. Hydrogen Energy
35
,
5479
(
2010
).
11.
D. G.
Narehood
,
S.
Kishore
,
H.
Goto
,
J. H.
Adair
,
J. A.
Nelson
,
H. R.
Gutiérrez
, and
P. C.
Eklund
,
Int. J. Hydrogen Energy
34
,
952
(
2009
).
12.
M.
Yamauchi
,
R.
Ikeda
,
H.
Kitagawa
, and
M.
Takata
,
J. Phys. Chem. C
112
,
3294
(
2008
).
13.
M.
Yamauchi
and
H.
Kitagawa
,
Synth. Met.
153
,
353
(
2005
).
14.
G.
Li
,
H.
Kobayashi
,
S.
Dekura
,
R.
Ikeda
,
Y.
Kubota
,
K.
Kato
,
M.
Takata
,
T.
Yamamoto
,
S.
Matsumura
, and
H.
Kitagawa
,
J. Am. Chem. Soc.
136
,
10222
(
2014
).
15.
H.
Kobayashi
,
M.
Yamauchi
,
H.
Kitagawa
,
Y.
Kubota
,
K.
Kato
, and
M.
Takata
,
J. Am. Chem. Soc.
130
,
1828
(
2008
).
16.
V.
Bérubé
,
G.
Radtke
,
M.
Dresselhaus
, and
G.
Chen
,
Int. J. Energy Res.
31
,
637
(
2007
).
17.
A.
Pundt
,
M.
Suleiman
,
C.
Bähtz
,
M. T.
Reetz
,
R.
Kirchheim
, and
N. M.
Jisrawi
,
Mater. Sci. Eng.
108
,
19
(
2004
).
18.
M.
Suleiman
,
N. M.
Jisrawi
,
O.
Denkert
,
M. T.
Reetz
,
C.
Bähtz
,
R.
Kirchheim
, and
A.
Pundt
,
J. Alloys Compd.
356
,
644
(
2003
).
19.
H.
Kobayashi
,
M.
Yamauchi
, and
H.
Kitagawa
,
J. Am. Chem. Soc.
134
,
6893
(
2012
).
20.
H.
Kobayashi
,
H.
Morita
,
M.
Yamauchi
,
R.
Ikeda
,
H.
Kitagawa
,
Y.
Kubota
,
K.
Kato
, and
M.
Takata
,
J. Am. Chem. Soc.
133
,
11034
(
2011
).
21.
H.
Kobayashi
,
M.
Yamauchi
,
H.
Kitagawa
,
Y.
Kubota
,
K.
Kato
, and
M.
Takata
,
J. Am. Chem. Soc.
132
,
5576
(
2010
).
22.
K.
Kusada
,
M.
Yamauchi
,
H.
Kobayashi
,
H.
Kitagawa
, and
Y.
Kubota
,
J. Am. Chem. Soc.
132
,
15896
(
2010
).
23.
Y.
Nanba
,
T.
Ishimoto
, and
M.
Koyama
,
J. Phys. Chem. C
121
,
14611
(
2017
).
24.
H.
Akiba
,
M.
Kofu
,
H.
Kobayashi
,
H.
Kitagawa
,
K.
Ikeda
,
T.
Otomo
, and
O.
Yamamuro
,
J. Am. Chem. Soc.
138
,
10238
(
2016
).
25.
H.
Grönbeck
and
V. P.
Zhdanov
,
Phys. Rev. B
84
,
052301
(
2011
).
26.
X.
Ke
,
G. J.
Kramer
, and
O. M.
Løvvik
,
J. Phys.: Condens. Matter
16
,
6267
(
2004
).
27.
R.
Caputo
and
A.
Alayi
,
Mol. Phys.
101
,
1781
(
2003
).
28.
P.
Kamakoti
and
D. S.
Sholl
,
J. Membr. Sci.
225
,
145
(
2003
).
29.
O. M.
Løvvik
and
R. A.
Olsen
,
J. Alloys Compd.
330-332
,
332
(
2002
).
30.
P.
Ferrin
,
S.
Kandoi
,
A. U.
Nilekar
, and
M.
Mavrikakis
,
Surf. Sci.
606
,
679
(
2012
).
31.
C.
Zhang
and
A.
Michaelides
,
Surf. Sci.
605
,
689
(
2011
).
32.
R. A.
Olsen
,
G. J.
Kroes
,
O. M.
Løvvik
, and
E. J.
Baerends
,
J. Chem. Phys.
107
,
10652
(
1997
).
33.
M. S.
Daw
and
S. M.
Foiles
,
Phys. Rev. B
35
,
2128
(
1987
).
34.
A.
Lebon
,
A.
García-Fuente
,
A.
Vega
, and
F.
Aguilera-Granja
,
J. Phys. Chem. C
116
,
126
(
2012
).
35.
K. M.
Neyman
and
S.
Schauermann
,
Angew. Chem., Int. Ed.
49
,
4743
(
2010
).
36.
I. V.
Yudanov
,
K. M.
Neyman
, and
N.
Rösch
,
Phys. Chem. Chem. Phys.
6
,
116
(
2004
).
37.
T.
Ishimoto
and
M.
Koyama
,
J. Phys. Chem. Lett.
7
,
736
(
2016
).
38.
T.
Ishimoto
,
Y.
Inadomi
,
H.
Honda
, and
M.
Koyama
,
J. Comput. Chem., Jpn.
14
,
52
(
2015
).
39.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
40.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
41.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
42.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
45.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
46.
M.
José-Yacamán
,
M.
Marín-Almazo
, and
J. A.
Ascencio
,
J. Mol. Catal. A: Chem.
173
,
61
(
2001
).
47.
D.
Bochicchio
and
R.
Ferrando
,
Phys. Rev. B
87
,
165435
(
2013
).
48.
M.
Shao
and
A.
Peles
,
Nano Lett.
11
,
3714
(
2011
).
49.
R.
Lamber
,
S.
Wetjen
, and
N. I.
Jaeger
,
Phys. Rev. B
51
,
10968
(
1995
).
50.
M.
Kofu
,
N.
Hashimoto
,
H.
Akiba
,
H.
Kobayashi
,
H.
Kitagawa
,
M.
Tyagi
,
A.
Faraone
,
J. R. D.
Copley
,
W.
Lohstroh
, and
O.
Yamamuro
,
Phys. Rev. B
94
,
064303
(
2016
).
51.
J. E.
Sutton
and
D. G.
Vlachos
,
ACS Catal.
2
,
1624
(
2012
).
52.
C. T.
Chudley
,
Proc. Phys. Soc.
77
,
353
(
1961
).

Supplementary Material

You do not currently have access to this content.