Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

1.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
Oxford
,
1997
).
2.
Hydrogen Bonding–New Insights
, edited by
S. J.
Grabowski
(
Springer
,
Dordrecht, The Netherlands
,
2006
).
3.
J.
Černý
and
P.
Hobza
,
Phys. Chem. Chem. Phys.
9
,
5291
(
2007
).
4.
C.
Yang
,
A. B. E.
Attia
,
J. P. K.
Tan
,
X.
Ke
,
S.
Gao
,
J. L.
Hedrick
, and
Y.-Y.
Yang
,
Biomaterials
33
,
2971
(
2012
).
5.
S. E.
Wheeler
,
Acc. Chem. Res.
46
,
1029
(
2013
).
6.
D.
Umadevi
,
S.
Panigrahi
, and
G. N.
Sastry
,
Acc. Chem. Res.
47
,
2574
(
2014
).
7.
N.
Bordenave
,
B. R.
Hamaker
, and
M. G.
Ferruzi
,
Food Funct.
5
,
18
(
2014
).
8.
S. K.
Singh
and
A.
Das
,
Phys. Chem. Chem. Phys.
17
,
9596
(
2015
).
9.
A. G.
Császár
,
J. Phys. Chem.
100
,
3541
(
1996
).
10.
R. M.
Balabin
,
Phys. Chem. Chem. Phys.
14
,
99
(
2012
).
11.
E.
Muchová
,
P.
Slavíček
,
A. L.
Sobolewski
, and
P.
Hobza
,
J. Phys. Chem. A
111
,
5259
(
2007
).
12.
B.
Zuckerman
,
J. A.
Ball
, and
C. A.
Gottlieb
,
Astrophys. J.
163
,
L41
(
1971
).
13.
S.
Ioppolo
,
H. M.
Cuppen
,
E. F.
van Dishoeck
, and
H.
Linnartz
,
Mon. Not. R. Astron. Soc.
410
,
1089
(
2011
).
14.
W. C.
Keene
and
J. N.
Galloway
,
Tellus B
40B
,
322
(
1988
).
15.
P.
Khare
,
N.
Kumar
,
K. M.
Kumari
, and
S. S.
Srivastasa
,
Rev. Geophys.
37
,
227
, (
1999
).
16.
R. W.
Talbot
,
K. M.
Beecher
,
R. C.
Harriss
, and
W. R.
Cofer
 III
,
J. Geophys. Res.
93
,
1638
, (
1988
).
17.
W. H.
Hocking
,
Z. Naturforsch., A: Phys. Sci.
31
,
1113
(
1976
).
18.
M.
Pettersson
,
E. M. S.
Maçôas
,
L.
Khriachtchev
,
R.
Fausto
, and
M.
Räsänen
,
J. Am. Chem. Soc.
125
,
4058
(
2003
).
19.
M.
Pettersson
,
J.
Lundell
,
L.
Khriachtchev
, and
M.
Räsänen
,
J. Am. Chem. Soc.
119
,
11715
(
1997
).
20.
E. M. S.
Maçôas
,
J.
Lundell
,
M.
Pettersson
,
L.
Khriachtchev
,
R.
Fausto
, and
M.
Räsänen
,
J. Mol. Spectrosc.
219
,
70
(
2003
).
21.
K.
Marushkevich
,
L.
Khriachtchev
,
J.
Lundell
,
A. V.
Domanskaya
, and
M.
Räsänen
,
J. Mol. Spectrosc.
259
,
105
(
2010
).
22.
M.
Pettersson
,
E. M. S.
Maçôas
,
L.
Khriachtchev
,
J.
Lundell
,
R.
Fausto
, and
M.
Räsänen
,
J. Chem. Phys.
117
,
9095
(
2002
).
23.
A.
Domanskaya
,
K.
Marushkevich
,
L.
Khriachtchev
, and
M.
Räsänen
,
J. Chem. Phys.
130
,
154509
(
2009
).
24.
M.
Tsuge
and
L.
Khriachtchev
,
J. Phys. Chem. A
119
,
2628
(
2015
).
25.
J.
Chao
and
B. J.
Zwolinski
,
J. Phys. Chem. Ref. Data
7
,
363
(
1978
).
26.
I.
Nahringbauer
,
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
34
,
315
(
1978
).
27.
Z.
Berkovitch-Yellin
and
L.
Leiserowitz
,
J. Am. Chem. Soc.
104
,
4052
(
1982
).
28.
R.
Chelli
,
R.
Righini
, and
S.
Califano
,
J. Phys. Chem. B
109
,
17006
(
2005
).
29.
I.
Bakó
,
J.
Hutter
, and
G.
Pálinkás
,
J. Phys. Chem. A
110
,
2188
(
2006
).
30.
D. R.
Allan
and
S. J.
Clark
,
Phys. Rev. Lett.
82
,
3464
(
1999
).
31.
J. E.
Bertie
and
K. H.
Michaelian
,
J. Chem. Phys.
76
,
886
(
1982
).
32.
Y.
Maréchal
,
J. Chem. Phys.
87
,
6344
(
1987
).
33.
R.
Georges
,
M.
Freytes
,
D.
Hurtmans
,
I.
Kleiner
,
J. V.
Auwera
, and
B.
Herman
,
Chem. Phys.
305
,
187
(
2004
).
34.
P.
Zielke
and
M. A.
Suhm
,
Phys. Chem. Chem. Phys.
9
,
4528
(
2007
).
35.
R. M.
Balabin
,
J. Phys. Chem. A
113
,
4910
(
2009
).
36.
K. G.
Goroya
,
Y.
Zhu
,
P.
Sun
, and
C.
Duan
,
J. Chem. Phys.
140
,
164311
(
2014
).
37.
F.
Madeja
,
M.
Havenith
,
K.
Nauta
,
R. E.
Miller
,
J.
Chocholousová
, and
P.
Hobza
,
J. Chem. Phys.
120
,
10554
(
2004
).
38.
F.
Ito
,
J. Chem. Phys.
128
,
114310
(
2008
).
40.
P.
Rodziewicz
and
N. L.
Doltsinis
,
J. Phys. Chem. A
113
,
6266
(
2009
).
41.
L.
Turi
,
J. Phys. Chem.
100
,
11285
(
1996
).
42.
S.
Roszak
,
R. H.
Gee
,
K.
Balasubramanian
, and
L. E.
Fried
,
J. Chem. Phys.
123
,
144702
(
2005
).
43.
K.
Maruskevich
,
L.
Khriachtchev
,
J.
Lundell
,
A.
Domanskaya
, and
M.
Räsänen
,
J. Phys. Chem. A
114
,
3495
(
2010
).
44.
W. G.
Rothschild
,
J. Chem. Phys.
61
,
3422
(
1974
).
45.
M.
Gantenberg
,
M.
Halupka
, and
W.
Sander
,
Chem. Eur. J.
6
,
1865
(
2000
).
46.
A.
Olbert-Majkut
,
J.
Ahokas
,
J.
Lundell
, and
M.
Pettersson
,
Chem. Phys. Lett.
468
,
176
(
2009
).
47.
A.
Olbert-Majkut
,
J.
Ahokas
,
J.
Lundell
, and
M.
Pettersson
,
Phys. Chem. Chem. Phys.
12
,
7138
(
2010
).
48.
D.
Luckhaus
,
Phys. Chem. Chem. Phys.
12
,
8357
(
2010
).
49.
J.
Chocholousová
,
J.
Vacek
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
4
,
2119
(
2002
).
50.
W.
Qian
and
S.
Krimm
,
J. Phys. Chem. A
105
,
5046
(
2001
).
51.
I.
Yavuz
and
C.
Trindle
,
J. Chem. Theory Comput.
4
,
533
(
2008
).
52.
R.
Kalescky
,
E.
Kraka
, and
D.
Cremer
,
Mol. Phys.
111
,
1497
(
2013
).
53.
S. F.
Figueredo
,
A. E.
Ensuncho
, and
J. M.
López
,
Quim. Nova
37
,
1365
(
2014
).
54.
S. F.
Figueredo
,
A. E.
Ensuncho
, and
J. M.
López
,
Rev. Mex. Fis.
61
,
96
(
2015
).
55.
K.
Marushkevich
,
L.
Khriachtchev
,
M.
Räsänen
,
M.
Melavuori
, and
J.
Lundell
,
J. Phys. Chem. A
116
,
2101
(
2012
).
56.
K.
Maruskevich
,
L.
Khriachtchev
, and
M.
Räsänen
,
J. Chem. Phys.
126
,
241102
(
2007
).
57.
K.
Maruskevich
,
L.
Khriachtchev
,
J.
Lundell
, and
M.
Räsänen
,
J. Am. Chem. Soc.
128
,
12060
(
2006
).
58.
K.
Marushkevich
,
M.
Siltanen
,
M.
Räsänen
,
L.
Halonen
, and
L.
Khriachtchev
,
J. Phys. Chem. Lett.
2
,
695
(
2011
).
59.
L.
Khriachtchev
,
J. Phys. Chem. A
119
,
2735
(
2015
).
60.
P.
Farfán
,
A.
Echeverri
,
E.
Diaz
,
J. D.
Tapia
,
S.
Gómez
, and
A.
Restrepo
,
J. Chem. Phys.
147
,
044312
(
2017
).
61.
L.
Khriachtchev
,
J. Mol. Struct.
880
,
14
(
2008
).
62.
N. A.
Young
,
Coord. Chem. Rev.
257
,
956
(
2013
).
63.
S.
Lopes
,
A. V.
Domanskaya
,
R.
Fausto
,
M.
Räsänen
, and
L.
Khriachtchev
,
J. Chem. Phys.
133
,
144507
(
2010
).
64.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
65.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
66.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
67.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., gaussian 09, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
68.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
69.
S.
Lopes
,
A. V.
Domanskaya
,
M.
Räsänen
,
L.
Khriachtchev
, and
R.
Fausto
,
J. Chem. Phys.
143
,
104307
(
2015
).
70.
K.
Maruskevich
,
M.
Räsänen
, and
L.
Khriachtchev
,
J. Phys. Chem. A
114
,
10584
(
2010
).
71.
P. K.
Wawrzyniak
,
J.
Panek
,
Z.
Latajka
, and
J.
Lundell
,
J. Mol. Struct.
691
,
115
(
2004
).

Supplementary Material

You do not currently have access to this content.