Vibrational spectroscopy of water contains a wealth of information about the structure and dynamics of this fascinating substance. Theoretical modeling of fundamental vibrational transitions in condensed water has proven difficult, and in many circumstances, one cannot reach even qualitative agreement with experiment. Due to the ability of water to form hydrogen bonds of various strengths, the OH stretching band spans several hundreds of wave numbers in the spectra, overlapping with the first overtone of the HOH bending band and triggering a resonance between these two vibrations. This effect, known as Fermi resonance, has been traditionally ignored in theoretical condensed-phase simulations due to the additional computational burden and its deemed low importance. Depending on a particular molecular environment, the Fermi resonance manifests itself from small spectral features in the spectra of liquid water to pronounced distinct peaks in the spectra of ice and water clusters. The goal of this work is to illustrate the effects of including the Fermi resonance coupling between the bending overtone and stretching fundamental vibrations in the mixed quantum-classical formalism developed by Skinner and co-workers on the IR and Raman spectra of liquid water and the water hexamer. We show that by adding the Fermi resonance coupling, we are able to reproduce the location of the peak and a shoulder on the red side of the IR spectrum as well as the bimodal structure of the polarized Raman spectrum of liquid water at 300 K. Very good agreement between theory and experiment is achieved for the IR spectra of the water hexamer as well. We suggest that the Fermi resonance should not be ignored if intricate features of spectra are of interest. In spite of these promising results obtained in the region of a spectrum where Fermi resonance is important, further development of spectroscopic maps is needed to improve agreement with the experiment outside of the frequency range affected by the Fermi resonance.

1.
G. L.
Richmond
, “
Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy
,”
Chem. Rev.
102
,
2693
(
2002
).
2.
H.
Bakker
and
J. L.
Skinner
, “
Vibrational spectroscopy as a probe of structure and dynamics in liquid water
,”
Chem. Rev.
110
,
1498
(
2010
).
3.
M. J.
Shultz
,
T. H.
Vu
,
B.
Meyer
, and
P.
Bisson
, “
Water: A responsive small molecule
,”
Acc. Chem. Res.
45
,
15
22
(
2012
).
4.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge, UK
,
2011
).
5.
F.
Perakis
,
L.
De Marco
,
A.
Shalit
,
F.
Tang
,
Z. R.
Kann
,
T. D.
Kühne
,
R.
Torre
,
M.
Bonn
, and
Y.
Nagata
, “
Vibrational spectroscopy and dynamics of water
,”
Chem. Rev.
116
,
7590
7607
(
2016
).
6.
E.
Whalley
, “
A detailed assignment of the O-H stretching bands of ice I
,”
Can. J. Chem.
55
,
3429
(
1977
).
7.
K.
Ramasesha
,
L. D.
Marco
,
A.
Mandal
, and
A.
Tokmakoff
, “
Water vibrations have strongly mixed intra- and intermolecular character
,”
Nat. Chem.
5
,
935
(
2013
).
8.
D.
Kraemer
,
M. L.
Cowan
,
A.
Paarmann
,
N.
Huse
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
, “
Temperature dependence of the two-dimensional infrared spectrum of liquid H2O
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
437
(
2008
).
9.
S. T.
van der Post
,
C.-S.
Hsieh
,
M.
Okuno
,
Y.
Nagata
,
H. J.
Bakker
,
M.
Bonn
, and
J.
Hunger
, “
Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity
,”
Nat. Commun.
6
,
8384
(
2015
).
10.
Y.
Nagata
,
S.
Yoshimune
,
C.-S.
Hsieh
,
J.
Hunger
, and
M.
Bonn
, “
Ultrafast vibrational dynamics of water disentangled by reverse nonequilibrium ab initio molecular dynamics simulations
,”
Phys. Rev. X
5
,
021002
(
2015
).
11.
L.
De Marco
,
J. A.
Fournier
,
M.
Thämer
,
W.
Carpenter
, and
A.
Tokmakoff
, “
Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy
,”
J. Chem. Phys.
145
,
094501
(
2016
).
12.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
, “
Water dynamics: Vibrational echo correlation spectroscopy and comparison to molecular dynamics simulations
,”
J. Phys. Chem. A
108
,
1107
(
2004
).
13.
Z.
Wang
,
A.
Pakoulev
,
Y.
Pang
, and
D. D.
Dlott
, “
Vibrational substructure in the OH stretching band of water
,”
Chem. Phys. Lett.
378
,
281
(
2003
).
14.
R.
Laenen
,
K.
Simeonidis
, and
A.
Laubereau
, “
Subpicosecond spectroscopy of liquid water in the infrared: Effect of deuteration on the structural and vibrational dynamics
,”
J. Phys. Chem. B
106
,
408
(
2002
).
15.
G.
Gallot
,
N.
Lascoux
,
G. M.
Gale
,
J.-C.
Leicknam
,
S.
Bratos
, and
S.
Pommeret
, “
Non-monotonic decay of transient infrared absorption in dilute HDO/D2O solutions
,”
Chem. Phys. Lett.
341
,
535
(
2001
).
16.
J.
Stenger
,
D.
Madsen
,
P.
Hamm
,
E. T. J.
Nibbering
, and
T.
Elsaesser
, “
Ultrafast vibrational dephasing of liquid water
,”
Phys. Rev. Lett.
87
,
027401
(
2001
).
17.
C. J.
Fecko
,
J. D.
Eaves
,
J. J.
Loparo
,
A.
Tokmakoff
, and
P. L.
Geissler
, “
Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water
,”
Science
301
,
1698
(
2003
).
18.
G. M.
Gale
,
G.
Gallot
,
F.
Hache
,
N.
Lascoux
,
S.
Bratos
, and
J.-C.
Leicknam
, “
Femtosecond dynamics of hydrogen bonds in liquid water: A real time study
,”
Phys. Rev. Lett.
82
,
1068
(
1999
).
19.
A.
Pakoulev
,
Z.
Wang
, and
D. D.
Dlott
, “
Vibrational relaxation and spectral evolution following ultrafast OH stretch excitation in water
,”
Chem. Phys. Lett.
371
,
594
(
2003
).
20.
J. C.
Deàk
,
L. K.
Iwaki
,
S. T.
Rhea
, and
D. D.
Dlott
, “
Ultrafast infrared-Raman studies of vibrational energy redistribution in polyatomic liquids
,”
J. Raman Spectrosc.
31
,
263
(
2000
).
21.
S.
Woutersen
,
U.
Emmerichs
, and
H. J.
Bakker
, “
Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure
,”
Science
278
,
658
(
1997
).
22.
A. J.
Lock
and
H. J.
Bakker
, “
Temperature dependence of vibrational relaxation in liquid H2O
,”
J. Chem. Phys.
117
,
1708
(
2002
).
23.
D. E.
Hare
and
C. M.
Sorensen
, “
Interoscillator coupling effects on the OH stretching band of water
,”
J. Chem. Phys.
96
,
13
(
1992
).
24.
N. F.
Zobov
,
O. L.
Polyansky
,
C. R.
Le Sueur
, and
J.
Tennyson
, “
Vibration-rotation levels of water beyond the Born-Oppenheimer approximation
,”
Chem. Phys. Lett.
260
,
381
387
(
1996
).
25.
J. L.
Skinner
,
B. M.
Auer
, and
Y.-S.
Lin
, “
Vibrational line shapes and spectral diffusion in liquid water
,”
Adv. Chem. Phys.
142
,
59
(
2009
).
26.
J. E.
Bertie
,
M. K.
Ahmed
, and
H. H.
Eysel
, “
Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of H2O and D2O at 22 °C
,”
J. Phys. Chem.
93
,
2210
(
1989
).
27.
J. B.
Brubach
,
A.
Mermet
,
A.
Filabozzi
,
A.
Gerschel
, and
R.
Roy
, “
Signatures of the hydrogen bonding in the infrared bands of water
,”
J. Chem. Phys.
122
,
184509
(
2005
).
28.
J. E.
Bertie
and
Z.
Lan
, “
Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm−1
,”
Appl. Spectrosc.
50
,
1047
(
1996
).
29.
W. F.
Murphy
and
H. J.
Bernstein
, “
Raman spectra and an assignment of the vibrational stretching region of water
,”
J. Phys. Chem.
76
,
1147
(
1972
).
30.
J. L.
Green
,
A. R.
Lacey
, and
M. G.
Sceats
, “
Spectroscopic evidence for spatial correlations of hydrogen bonds in liquid water
,”
J. Phys. Chem.
90
,
3958
(
1986
).
31.
G.
D’Arrigo
,
G.
Maisano
,
F.
Mallamace
,
P.
Migliardo
, and
F.
Wanderlingh
, “
Raman scattering and structure of normal and supercooled water
,”
J. Chem. Phys.
75
,
4264
(
1981
).
32.
G. E.
Walrafen
, “
Raman spectral studies of the effects of temperature on water structure
,”
J. Chem. Phys.
47
,
114
(
1967
).
33.
D. M.
Carey
and
G. M.
Korenowski
, “
Measurement of the Raman spectrum of liquid water
,”
J. Chem. Phys.
108
,
2669
(
1998
).
34.
J. R.
Scherer
,
M. K.
Go
, and
S.
Kint
, “
Raman spectra and structure of water from -10 to 90°
,”
J. Phys. Chem.
78
,
1304
(
1974
).
35.
G. E.
Walrafen
,
M. R.
Fischer
,
M. S.
Hokmabadi
, and
W. H.
Yang
, “
Temperature dependence of the low and high frequency Raman scattering from liquid water
,”
J. Chem. Phys.
85
,
6970
(
1986
).
36.
M. H.
Brooker
,
G.
Hancock
,
B. C.
Rice
, and
J.
Shapter
, “
Raman frequency and intensity studies of liquid H2O, H218O and D2O
,”
J. Raman Spectrosc.
20
,
683
694
(
1989
).
37.
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
, “
Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O
,”
J. Chem. Phys.
120
,
8107
(
2004
).
38.
J. D.
Eaves
,
A.
Tokmakoff
, and
P. L.
Geissler
, “
Electric field fluctuations drive vibrational dephasing in water
,”
J. Phys. Chem. A
109
,
9424
(
2005
).
39.
M.
Falk
, “
The frequency of the H-O-H bending fundamental in solids and liquids
,”
Spectrochim. Acta, Part A
40
,
43
(
1984
).
40.
J.-J.
Max
and
C.
Chapados
, “
Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm−1
,”
J. Chem. Phys.
131
,
184505
(
2009
).
41.
D. A.
Draegert
,
N. W. B.
Stone
,
B.
Curnutte
, and
D.
Williams
, “
Far-infrared spectrum of liquid water
,”
J. Opt. Soc. Am.
56
,
64
(
1966
).
42.
M.
Pavlovic
,
G.
Baranovic
, and
D.
Lovrekovic
, “
Raman-study of the bending band of water
,”
Spectrochim. Acta, Part A
47
,
897
(
1991
).
43.
W. B.
Carpenter
,
J. A.
Fournier
,
R.
Biswas
,
G. A.
Voth
, and
A.
Tokmakoff
, “
Delocalization and stretch-bend mixing of the HOH bend in liquid water
,”
J. Chem. Phys.
147
,
084503
(
2017
).
44.
Y.
Ni
and
J. L.
Skinner
, “
IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively
,”
J. Chem. Phys.
143
,
014502
(
2015
).
45.
S.
Ashihara
,
S.
Fujioka
, and
K.
Shibuya
, “
Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O
,”
Chem. Phys. Lett.
502
,
57
(
2011
).
46.
S.
Ashihara
,
N.
Huse
,
A.
Espagne
,
E. T. J.
Nibbering
, and
T.
Elsaesser
, “
Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H2O
,”
Chem. Phys. Lett.
424
,
66
(
2006
).
47.
J.
Lindner
,
P.
Vöhringer
,
M. S.
Pshenichnikov
,
D.
Cringus
,
D. A.
Wiersma
, and
M.
Mostovoy
, “
Vibrational relaxation of pure liquid water
,”
Chem. Phys. Lett.
421
,
329
(
2006
).
48.
N.
Huse
,
S.
Ashihara
,
E. T. J.
Nibbering
, and
T.
Elsaesser
, “
Ultrafast vibrational relaxation of O-H bending and librational excitations in liquid H2O
,”
Chem. Phys. Lett.
404
,
389
(
2005
).
49.
P.
Bodis
,
O. F. A.
Larsen
, and
S.
Woutersen
, “
Vibrational relaxation of the bending mode of HDO in liquid D2O
,”
J. Phys. Chem. A
109
,
5303
(
2005
).
50.
F.
Ingrosso
,
R.
Rey
,
T.
Elsaesser
, and
J. T.
Hynes
, “
Ultrafast energy transfer from the intramolecular bending vibration to librations in liquid water
,”
J. Phys. Chem. A
113
,
6657
(
2009
).
51.
B.
Miguel
,
J.
Zuniga
,
A.
Requena
, and
A.
Bastida
, “
Theoretical study of the tempertature dependence of the vibrational relaxation of the H2O bend fundamental in liquid water and the subsequent distortion of the hydrogen bond network
,”
J. Phys. Chem. B
118
,
9427
(
2014
).
52.
M.
Smits
,
A.
Ghosh
,
M.
Sterrer
,
M.
Müller
, and
M.
Bonn
, “
Ultrafast vibrational energy transfer between surface and bulk water at the air-water interface
,”
Phys. Rev. Lett.
98
,
098302
(
2007
).
53.
R.
Rey
and
J. T.
Hynes
, “
Tracking energy transfer from excited to accepting modes: Application to water bend vibrational relaxation
,”
Phys. Chem. Chem. Phys.
14
,
6332
(
2012
).
54.
O. F. A.
Larsen
and
S.
Woutersen
, “
Vibrational relaxation of the H2O bending mode in liquid water
,”
J. Chem. Phys.
121
,
12143
(
2004
).
55.
C. P.
Lawrence
and
J. L.
Skinner
, “
Vibrational spectroscopy of HOD in liquid D2O. VI. Intramolecular and intermolecular vibrational energy flow
,”
J. Chem. Phys.
119
,
1623
(
2003
).
56.
S.
Imoto
,
S. S.
Xantheas
, and
S.
Saito
, “
Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice
,”
J. Chem. Phys.
138
,
054506
(
2013
).
57.
Y.
Maréchal
, “
Infrared spectra of water. I. Effect of temperature and of H/D isotopic dilution
,”
J. Chem. Phys.
95
,
5565
5573
(
1991
).
58.
E.
Fermi
, “
Über den Ramaneffekt des kohlendioxyds
,”
Z. Phys.
71
,
250
259
(
1931
).
59.
F.
Rasetti
, “
Raman effect in gases
,”
Nature
123
,
205
(
1929
).
60.
R. G.
Dickinson
,
R. T.
Dillon
, and
F.
Rasetti
, “
Raman spectra of polyatomic gases
,”
Phys. Rev.
34
,
582
589
(
1929
).
61.
R. S.
Mulliken
, “
Report on notation for the spectra of polyatomic molecules
,”
J. Chem. Phys.
23
,
1997
2011
(
1955
).
62.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
A. G.
Császár
,
L.
Daumont
,
R. R.
Gamache
,
J. T.
Hodges
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
A. C.
Vandaele
,
N. F.
Zobov
,
A. R.
Al Derzi
,
C.
Fábri
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
L.
Lodi
, and
I. I.
Mizus
, “
IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O
,”
J. Quant. Spectrosc. Radiat. Transfer
117
,
29
58
(
2013
).
63.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules
, Molecular Spectra and Molecular Structure (
Van Nostrand
,
1939
).
64.
C. I.
Ratcliffe
and
D. E.
Irish
, “
Vibrational spectral studies of solutions at elevated temperatures and pressures Raman studies of liquid water up to 300 C
,”
J. Phys. Chem.
86
,
4897
(
1982
).
65.
S.
Horvath
,
A. B.
McCoy
,
B. M.
Elliott
,
G. H.
Weddle
,
J. R.
Roscioli
, and
M. A.
Johnson
, “
Anharmonicities and isotopic effects in the vibrational spectra of x·H2O, ·HDO, and ·D2O [X = Cl, Br, and I] binary complexes
,”
J. Phys. Chem. B
114
,
1556
1568
(
2010
).
66.
J. R.
Scherer
,
M. K.
Go
, and
S.
Kint
, “
Raman spectra and structure of water in dimethyl sulfoxide
,”
J. Phys. Chem.
77
,
2108
2117
(
1973
).
67.
A.
Sokołowska
, “
Effect of isotope dilution on the Fermi resonance in water
,”
J. Raman Spectrosc.
22
,
31
33
(
2005
).
68.
Z.
Wang
,
A.
Pakoulev
,
Y.
Pang
, and
D. D.
Dlott
, “
Vibrational substructure in the OH stretching transition of water and HOD
,”
J. Phys. Chem. A
108
,
9054
(
2004
).
69.
L.
De Marco
,
K.
Ramasesha
, and
A.
Tokmakoff
, “
Experimental evidence of Fermi resonances in isotopically dilute water from ultrafast broadband IR spectroscopy
,”
J. Phys. Chem. B
117
,
15319
15327
(
2013
).
70.
L.
De Marco
,
W.
Carpenter
,
H.
Liu
,
R.
Biswas
,
J. M.
Bowman
, and
A.
Tokmakoff
, “
Differences in the vibrational dynamics of H2O and D2O: Observation of symmetric and antisymmetric stretching vibrations in heavy water
,”
J. Phys. Chem. Lett.
7
,
1769
1774
(
2016
).
71.
P.
Ayotte
,
G. H.
Weddle
,
J.
Kim
, and
M. A.
Johnson
, “
Vibrational spectroscopy of the ionic hydrogen bond: Fermi resonances and ion-molecule stretching frequencies in the binary X·H2O (X = Cl, Br, I) complexes via argon predissociation spectroscopy
,”
J. Am. Chem. Soc.
120
,
12361
12362
(
1998
).
72.
J. D.
Rodriguez
,
T. D.
Vaden
, and
J. M.
Lisy
, “
Infrared spectroscopy of ionophore-model systems: Hydrated alkali metal ion 18-crown-6 ether complexes
,”
J. Am. Chem. Soc.
131
,
17277
17285
(
2009
).
73.
J. S.
Prell
and
E. R.
Williams
, “
Structures of thermal, mass-selected water clusters probed with hydrophobic ion tags and infrared photodissociation spectroscopy
,”
J. Am. Chem. Soc.
131
,
4110
4119
(
2009
).
74.
M.
Ahmed
,
A. K.
Singh
, and
J. A.
Mondal
, “
Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy
,”
Phys. Chem. Chem. Phys.
18
,
2767
2775
(
2016
).
75.
B.
Tremblay
,
B.
Madebène
,
M. E.
Alikhani
, and
J. P.
Perchard
, “
The vibrational spectrum of the water trimer: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 11,000 and 90 cm−1
,”
Chem. Phys.
378
,
27
36
(
2010
).
76.
T.
Salmi
,
H. G.
Kjaergaard
, and
L.
Halonen
, “
Calculation of overtone O-H stretching bands and intensities of the water trimer
,”
J. Phys. Chem. A
113
,
9124
9132
(
2009
).
77.
K. E.
Otto
,
Z.
Xue
,
P.
Zielke
, and
M. A.
Suhm
, “
The Raman spectrum of isolated water clusters
,”
Phys. Chem. Chem. Phys.
16
,
9849
(
2014
).
78.
K.
Nauta
and
R. E.
Miller
, “
Formation of cyclic water hexamer in liquid helium: The smallest piece of ice
,”
Science
287
,
293
(
2000
).
79.
C. J.
Burnham
,
S. S.
Xantheas
,
M. A.
Miller
,
B. E.
Applegate
, and
R. E.
Miller
, “
The formation of cyclic water complexes by sequential ring insertion: Experiment and theory
,”
J. Chem. Phys.
117
,
1109
(
2002
).
80.
Y.
Wang
and
J. M.
Bowman
, “
IR spectra of the water hexamer: Theory, with inclusion of the monomer bend overtone, and experiment are in agreement
,”
J. Phys. Chem. Lett.
4
,
1104
1108
(
2013
).
81.
E. G.
Diken
,
W. H.
Robertson
, and
M. A.
Johnson
, “
The vibrational spectrum of the neutral (H2O)6 precursor to the magic (H2O)6 cluster anion by argon-mediated population-modulated electron attachment spectroscopy
,”
J. Phys. Chem. A
108
,
64
(
2004
).
82.
J.
Kim
and
K. S.
Kim
, “
Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies
,”
J. Chem. Phys.
109
,
5886
(
1998
).
83.
W. H.
Robertson
,
G. H.
Weddle
,
J. A.
Kelley
, and
M. A.
Johnson
, “
Solvation of the Cl·H2O complex in CCl4 clusters: The effect of solvent-mediated charge redistribution on the ionic H-bond
,”
J. Phys. Chem. A
106
,
1205
1209
(
2002
).
84.
A. J.
Lock
,
S.
Woutersen
, and
H. J.
Bakker
, “
Ultrafast energy equilibration in hydrogen-bonded liquids
,”
J. Phys. Chem. A
105
,
1238
(
2001
).
85.
M. L.
Cowan
,
B. D.
Bruner
,
N.
Huse
,
J. R.
Dwyer
,
B.
Chugh
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. D. J.
Miller
, “
Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O
,”
Nature
434
,
199
(
2005
).
86.
D.
Cringus
,
J.
Lindner
,
M. T. W.
Milder
,
M. S.
Pshenichnikov
,
P.
Vohringer
, and
D. A.
Wiersma
, “
Femtosecond water dynamics in reverse-micellar nanodroplets
,”
Chem. Phys. Lett.
408
,
162
(
2005
).
87.
R.
Rey
and
J. T.
Hynes
, “
Vibrational energy relaxation of HOD in liquid D2O
,”
J. Chem. Phys.
104
,
2356
(
1996
).
88.
M. S.
Bergren
and
S. A.
Rice
, “
An improved analysis of the OH stretch region of the vibrational spectrum of ice Ih
,”
J. Chem. Phys.
77
,
583
(
1982
).
89.
M. G.
Sceats
,
M.
Stavola
, and
S. A.
Rice
, “
On the role of Fermi resonance in the spectrum of water in its condensed phases
,”
J. Chem. Phys.
71
,
983
(
1979
).
90.
H. R.
Wyss
and
M.
Falk
, “
Infrared spectrum of HDO in water and in NaCl solution
,”
Can. J. Chem.
48
,
607
(
1970
).
91.
O.
Marsalek
and
T. E.
Markland
, “
Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects
,”
J. Phys. Chem. Lett.
8
,
1545
1551
(
2017
).
92.
S. K.
Reddy
,
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
,”
J. Chem. Phys.
147
,
244504
(
2017
).
93.
M.
Yang
and
J. L.
Skinner
, “
Signatures of coherent energy transfer in IR and Raman line shapes for liquid water
,”
Phys. Chem. Chem. Phys.
12
,
982
(
2010
).
94.
B. M.
Auer
and
J. L.
Skinner
, “
IR and Raman spectra of liquid water: Theory and interpretation
,”
J. Chem. Phys.
128
,
224511
(
2008
).
95.
S. M.
Matt
and
D.
Ben-Amotz
, “
Influence of intermolecular coupling on the vibrational spectrum of water
,”
J. Phys. Chem. B
122
,
5375
(
2018
).
96.
D. P.
Tabor
,
R.
Kusaka
,
P. S.
Walsh
,
T. S.
Zwier
, and
E. L.
Sibert
 III
, “
Local mode approach to OH stretch spectra of Benzene–(H2O)n clusters, n = 2–7
,”
J. Phys. Chem. A
119
,
9917
9930
(
2015
).
97.
D. F.
Smith
, Jr.
and
J.
Overend
, “
Anharmonic force constants of water
,”
Spectrochim. Acta, Part A
28
,
471
483
(
1972
).
98.
J. E.
Baggott
, “
Normal modes and local modes in H2X: beyond the x, K relations
,”
Mol. Phys.
65
,
739
749
(
1988
).
99.

For H2X molecules the Fermi resonance coupling constant in the normal mode basis is 2 times larger than the Fermi resonance constant in the local mode basis. See e.g. Ref. 98 for details.

100.
H. G.
Kjaergaard
,
B. R.
Henry
,
H.
Wei
,
S.
Lefebvre
,
T.
Carrington
,
O. S.
Mortensen
, and
M. L.
Sage
, “
Calculation of vibrational fundamental and overtone band intensities of H2O
,”
J. Chem. Phys.
100
,
6228
6239
(
1994
).
101.
E. L.
Sibert
,
J. T.
Hynes
, and
W. P.
Reinhardt
, “
Fermi resonance from a curvilinear perspective
,”
J. Phys. Chem.
87
,
2032
2037
(
1983
).
102.
H. H.
Nielsen
, “
The vibration-rotation energies of molecules
,”
Rev. Mod. Phys.
23
,
90
136
(
1951
).
103.
A.
Willetts
,
N. C.
Handy
,
W. H.
Green
, and
D.
Jayatilaka
, “
Anharmonic corrections to vibrational transition intensities
,”
J. Phys. Chem.
94
,
5608
5616
(
1990
).
104.
J.
Vázquez
and
J. F.
Stanton
, “
Simple(r) algebraic equation for transition moments of fundamental transitions in vibrational second-order perturbation theory
,”
Mol. Phys.
104
,
377
388
(
2006
).
105.
V.
Barone
, “
Anharmonic vibrational properties by a fully automated second-order perturbative approach
,”
J. Chem. Phys.
122
,
014108
(
2005
).
106.
V.
Rodriguez-Garcia
,
S.
Hirata
,
K.
Yagi
,
K.
Hirao
,
T.
Taketsugu
,
I.
Schweigert
, and
M.
Tasumi
, “
Fermi resonance in CO2: A combined electronic coupled-cluster and vibrational configuration-interaction prediction
,”
J. Chem. Phys.
126
,
124303
(
2007
).
107.
T. C.
Thompson
and
D. G.
Truhlar
, “
SCF CI calculations for vibrational eigenvalues and wavefunctions of systems exhibiting Fermi resonance
,”
Chem. Phys. Lett.
75
,
87
90
(
1980
).
108.
H. G.
Kjaergaard
,
A. L.
Garden
,
G. M.
Chaban
,
R. B.
Gerber
,
D. A.
Matthews
, and
J. F.
Stanton
, “
Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches
,”
J. Phys. Chem. A
112
,
4324
4335
(
2008
).
109.
J. M.
Bowman
, “
The self-consistent-field approach to polyatomic vibrations
,”
Acc. Chem. Res.
19
,
202
208
(
2002
).
110.
I.
Shavitt
and
L. T.
Redmon
, “
Quasidegenerate perturbation theories. A canonical van Vleck formalism and its relationship to other approaches
,”
J. Chem. Phys.
73
,
5711
5717
(
1980
).
111.
E. L.
Sibert
 III
, “
Theoretical studies of vibrationally excited polyatomic molecules using canonical Van Vleck perturbation theory
,”
J. Chem. Phys.
88
,
4378
4390
(
1988
).
112.
S. G.
Ramesh
and
E. L.
Sibert
 III
, “
Combined perturbative-variational investigation of the vibrations of CHBr3 and CDBr3
,”
J. Chem. Phys.
120
,
11011
11025
(
2004
).
113.
A. B.
McCoy
and
E. L.
Silbert
 III
, “
Perturbative approaches to highly excited molecular vibrations of H2O, D2O, and HDO
,”
J. Chem. Phys.
92
,
1893
1901
(
1990
).
114.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
115.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a first principles water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
(
2013
).
116.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Deveopment of a first principles water potential with flexible monomers. II. Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
(
2014
).
117.
E. L.
Sibert
, private communication (
2018
).
118.
S. V.
Krasnoshchekov
,
R. S.
Schutski
,
N. C.
Craig
,
M.
Sibaev
, and
D. L.
Crittenden
, “
Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes
,”
J. Chem. Phys.
148
,
084102
(
2018
).
119.
B. M.
Auer
and
J. L.
Skinner
, “
Dynamical effects in line shapes for coupled chromophores: Time-averaging approach
,”
J. Chem. Phys.
127
,
104105
(
2007
).
120.
S. M.
Gruenbaum
,
C. J.
Tainter
,
L.
Shi
,
Y.
Ni
, and
J. L.
Skinner
, “
Robustness of frequency, transition dipole, and coupling maps for water vibrational spectroscopy
,”
J. Chem. Theory Comput.
9
,
3109
(
2013
).
121.
P. A.
Pieniazek
,
Y.-S.
Lin
,
J.
Chowdhary
,
B. M.
Ladanyi
, and
J. L.
Skinner
, “
Vibrational spectroscopy and dynamics of water confined inside reverse micelles
,”
J. Phys. Chem. B
113
,
15017
(
2009
).
122.
F.
Li
and
J. L.
Skinner
, “
Infrared and Raman line shapes for ice Ih. I. Dilute HOD in H2O and D2O
,”
J. Chem. Phys.
132
,
204505
(
2010
).
123.
F.
Li
and
J. L.
Skinner
, “
Infrared and Raman line shapes for ice Ih. II. H2O and D2O
,”
J. Chem. Phys.
133
,
244504
(
2010
).
124.
P. A.
Pieniazek
,
C. J.
Tainter
, and
J. L.
Skinner
, “
Surface of liquid water: Three-body interactions and vibrational sum-frequency spectrum
,”
J. Am. Chem. Soc.
133
,
10360
(
2011
).
125.
J. L.
Skinner
,
P. A.
Pieniazek
, and
S. M.
Gruenbaum
, “
Vibrational spectroscopy of water at interfaces
,”
Acc. Chem. Res.
45
,
93
(
2012
).
126.
C. J.
Tainter
and
J. L.
Skinner
, “
The water hexamer: Three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature
,”
J. Chem. Phys.
137
,
104304
(
2012
).
127.
Y.
Ni
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1992
(
2013
).
128.
C. J.
Tainter
,
Y.
Ni
,
L.
Shi
, and
J. L.
Skinner
, “
Hydrogen bonding and OH-stretch spectroscopy in water: Hexamer (cage), liquid surface, liquid, and ice
,”
J. Phys. Chem. Lett.
4
,
12
(
2013
).
129.
L.
Shi
and
J. L.
Skinner
, “
Proton disorder in ice Ih and inhomogeneous broadening in two-dimensional infrared spectroscopy
,”
J. Phys. Chem. B
117
,
15536
(
2013
).
130.
C. J.
Tainter
,
L.
Shi
, and
J. L.
Skinner
, “
Structure and OH-stretch spectroscopy of low- and high-density amorphous ices
,”
J. Chem. Phys.
140
,
134503
(
2014
).
131.
L.
Shi
,
Y.
Ni
,
S. E. P.
Drews
, and
J. L.
Skinner
, “
Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model
,”
J. Chem. Phys.
141
,
084508
(
2014
).
132.
S.
Roy
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces
,”
J. Chem. Phys.
141
,
18C502
(
2014
).
133.
S.
Roy
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra
,”
J. Chem. Phys.
141
,
22D505
(
2014
).
134.
Y.
Ni
and
J. L.
Skinner
, “
Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited
,”
J. Chem. Phys.
145
,
031103
(
2016
).
135.
L.
Shi
,
J. L.
Skinner
, and
T. L. C.
Jansen
, “
Two-dimensional infrared spectroscopy of neat ice Ih
,”
Phys. Chem. Chem. Phys.
18
,
3772
3779
(
2016
).
136.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
California
,
2000
).
137.
B. M.
Auer
and
J. L.
Skinner
, “
Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute HOD in D2O
,”
J. Chem. Phys.
129
,
214705
(
2008
).
138.
B. M.
Auer
,
R.
Kumar
,
J. R.
Schmidt
, and
J. L.
Skinner
, “
Hydrogen bonding and Raman, IR, and 2DIR spectroscopy of dilute HOD in liquid D2O
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
14215
(
2007
).
139.
S. A.
Corcelli
and
J. L.
Skinner
, “
Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 °C
,”
J. Phys. Chem. A
109
,
6154
(
2005
).
140.
I. E.
Gordon
,
L. S.
Rothman
,
C.
Hill
,
R. V.
Kochanov
,
Y.
Tan
,
P. F.
Bernath
,
M.
Birk
,
V.
Boudon
,
A.
Campargue
,
K. V.
Chance
,
B. J.
Drouin
,
J. M.
Flaud
,
R. R.
Gamache
,
J. T.
Hodges
,
D.
Jacquemart
,
V. I.
Perevalov
,
A.
Perrin
,
K. P.
Shine
,
M. A. H.
Smith
,
J.
Tennyson
,
G. C.
Toon
,
H.
Tran
,
V. G.
Tyuterev
,
A.
Barbe
,
A. G.
Császár
,
V. M.
Devi
,
T.
Furtenbacher
,
J. J.
Harrison
,
J. M.
Hartmann
,
A.
Jolly
,
T. J.
Johnson
,
T.
Karman
,
I.
Kleiner
,
A. A.
Kyuberis
,
J.
Loos
,
O. M.
Lyulin
,
S. T.
Massie
,
S. N.
Mikhailenko
,
N.
Moazzen-Ahmadi
,
H. S. P.
Müller
,
O. V.
Naumenko
,
A. V.
Nikitin
,
O. L.
Polyansky
,
M.
Rey
,
M.
Rotger
,
S. W.
Sharpe
,
K.
Sung
,
E.
Starikova
,
S. A.
Tashkun
,
J. V.
Auwera
,
G.
Wagner
,
J.
Wilzewski
,
P.
Wcisło
,
S.
Yu
, and
E. J.
Zak
, “
The HITRAN2016 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
203
,
3
69
(
2017
).
141.
A.
Belch
and
S.
Rice
, “
The OH stretching spectrum of liquid water: A random network model interpretation
,”
J. Chem. Phys.
78
,
4817
(
1983
).
142.
J. G.
Scherer
and
R. G.
Snyder
, “
Raman intensities of single crystal ice Ih
,”
J. Chem. Phys.
67
,
4794
(
1977
).
143.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
Dover
,
New York
,
1980
).
144.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up the 22-mer
,”
J. Chem. Phys.
134
,
094509
(
2011
).
145.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
146.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
147.
L.
Shi
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Interpretation of IR and Raman line shapes for H2O and D2O ice Ih
,”
J. Phys. Chem. B
116
,
13821
(
2012
).
148.
C. J.
Tainter
,
P. A.
Pieniazek
,
Y.-S.
Lin
, and
J. L.
Skinner
, “
Robust three-body water simulation model
,”
J. Chem. Phys.
134
,
184501
(
2011
).
149.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
150.
P. A.
Pieniazek
,
C. J.
Tainter
, and
J. L.
Skinner
, “
Interpretation of the water surface vibrational sum-frequency spectrum
,”
J. Chem. Phys.
135
,
044701
(
2011
).
151.
Y.
Ni
and
J. L.
Skinner
, “
Ultrafast pump-probe and 2DIR anisotropy and temperature-dependent dynamics of liquid water within the E3B model
,”
J. Chem. Phys.
141
,
024509
(
2014
).
152.
R.
Kumar
and
J. L.
Skinner
, “
Water simulation model with explicit three-molecule interactions
,”
J. Phys. Chem. B
112
,
8311
(
2008
).
153.
C. J.
Tainter
,
L.
Shi
, and
J. L.
Skinner
, “
Reparametrized E3B (explicit three-body) water model using the TIP4P/2005 model as a reference
,”
J. Chem. Theory Comput.
11
,
2268
2277
(
2015
).
154.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
(
2008
). Our home-modified GROMACS-4.5.5 package can be accessed at: https://ime.uchicago.edu/skinner_group/research/.
155.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
(
1993
).
156.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
(
1995
).
157.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
158.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
159.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
,”
J. Comput. Chem.
13
,
952
(
1992
).
160.
M.
Johnson
, private communication (
2012
).
161.
J.
Edler
and
P.
Hamm
, “
Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?
,”
J. Chem. Phys.
119
,
2709
2715
(
2003
).
You do not currently have access to this content.