In this work, a domain-based local pair natural orbital (DLPNO) version of the equation of motion coupled cluster theory with single and double excitations for ionization potentials (IP-EOM-CCSD) equations has been formulated and implemented. The method uses ground state localized occupied and pair natural virtual orbitals and applies the DLPNO machinery to arrive at a linear scaling implementation of the IP-EOM-CCSD method. The accuracy of the method is controllable using ground state truncation parameters. Using default thresholds, the method predicts ionization potential (IP) values with good accuracy (mean absolute error of 0.08 eV). We demonstrate that our code can be used to compute IP values for systems with more than 1000 atoms and 10 000 basis functions.

1.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2014
).
2.
D. J.
Rowe
,
Rev. Mod. Phys.
40
,
153
(
1968
).
3.
D.
Danovich
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
377
(
2011
).
4.
J. V.
Ortiz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
123
(
2013
).
5.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
117
,
6402
(
2002
).
6.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
7.
A. B.
Trofimov
and
J.
Schirmer
,
J. Phys. B: At., Mol. Opt. Phys.
28
,
2299
(
1995
).
8.
A.
Dreuw
and
M.
Wormit
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
(
2015
).
9.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
10.
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
Int. J. Quantum Chem.
e25594
(
2018
).
11.
M.
Nooijen
and
J. G.
Snijders
,
J. Chem. Phys.
102
,
1681
(
1995
).
12.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
).
13.
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
J. Chem. Theory Comput.
11
,
2461
(
2015
).
14.
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
J. Chem. Theory Comput.
9
,
4313
(
2013
).
15.
S.
Saebo
and
P.
Pulay
,
J. Chem. Phys.
88
,
1884
(
1988
).
16.
H.-J.
Werner
,
C.
Köppl
,
Q.
Ma
, and
M.
Schwilk
, “
Explicitly correlated local electron correlation methods
,” in
Fragmentation
(
John Wiley & Sons, Ltd.
,
2017
), pp.
1
79
.
17.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
18.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
120
,
6832
(
2004
).
19.
H.
Stoll
,
J. Chem. Phys.
97
,
8449
(
1992
).
20.
J.
Friedrich
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
126
,
154110
(
2007
).
21.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
).
22.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
23.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
25.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
131
,
114108
(
2009
).
26.
K.
Kristensen
,
M.
Ziolkowski
,
B.
Jansik
,
T.
Kjaergaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
7
,
1677
(
2011
).
27.
I.-M.
Hoyvik
,
K.
Kristensen
,
B.
Jansik
, and
P.
Jorgensen
,
J. Chem. Phys.
136
,
014105
(
2012
).
28.
W.
Li
,
Y.
Li
,
R.
Lin
, and
S.
Li
,
J. Phys. Chem. A
120
,
9667
(
2016
).
29.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
30.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
31.
S.
Saebo
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
32.
M.
Schütz
and
H.-J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
33.
M.
Schütz
,
J. Chem. Phys.
113
,
9986
(
2000
).
34.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
35.
T.
Korona
,
K.
Pfluger
, and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
6
,
2059
(
2004
).
36.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
127
,
064107
(
2007
).
37.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
125
,
104106
(
2006
).
38.
T.
Korona
and
H.-J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
39.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K. L.
Chan
,
J. Chem. Phys.
134
,
044123
(
2011
).
40.
J.
Yang
,
G. K.-L.
Chan
,
F. R.
Manby
,
M.
Schütz
, and
H.-J.
Werner
,
J. Chem. Phys.
136
,
144105
(
2012
).
41.
W.
Kutzelnigg
,
Theor. Chim. Acta
1
,
327
(
1963
).
42.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
45
,
1833
(
1966
).
43.
W.
Meyer
,
Int. J. Quantum Chem.
5
,
341
(
1971
).
44.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
45.
R.
Fink
and
V.
Staemmler
,
Theor. Chim. Acta
87
,
129
(
1993
).
46.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
47.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
48.
E.
Baerends
,
D.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
49.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
50.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
51.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
52.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
53.
O.
Demel
,
J.
Pittner
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
3104
(
2015
).
54.
F.
Pavosevic
,
F.
Neese
, and
E. F.
Valeev
,
J. Chem. Phys.
141
,
054106
(
2014
).
55.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
56.
P.
Pinski
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
143
,
034108
(
2015
).
57.
Y.
Guo
,
K.
Sivalingam
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
094111
(
2016
).
58.
M.
Saitow
,
U.
Becker
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
146
,
164105
(
2017
).
59.
D.
Datta
,
S.
Kossmann
, and
F.
Neese
,
J. Chem. Phys.
145
,
114101
(
2016
).
60.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
61.
Y.
Guo
,
C.
Riplinger
,
U.
Becker
,
D. G.
Liakos
,
Y.
Minenkov
,
L.
Cavallo
, and
F.
Neese
,
J. Chem. Phys.
148
,
011101
(
2018
).
62.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
024109
(
2016
).
63.
M.
Schwilk
,
D.
Usvyat
, and
H.-J.
Werner
,
J. Chem. Phys.
142
,
121102
(
2015
).
64.
Q.
Ma
,
M.
Schwilk
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
4871
(
2017
).
65.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
3650
(
2017
).
66.
Q.
Ma
and
H.-J.
Werner
,
J. Chem. Theory Comput.
14
,
198
(
2017
).
67.
H.-J.
Werner
,
J. Chem. Phys.
145
,
201101
(
2016
).
68.
Q.
Ma
and
H.-J.
Werner
,
J. Chem. Theory Comput.
11
,
5291
(
2015
).
69.
H.-J.
Werner
,
G.
Knizia
,
C.
Krause
,
M.
Schwilk
, and
M.
Dornbach
,
J. Chem. Theory Comput.
11
,
484
(
2015
).
70.
G.
Schmitz
,
C.
Hättig
, and
D. P.
Tew
,
Phys. Chem. Chem. Phys.
16
,
22167
(
2014
).
71.
G.
Schmitz
and
C.
Hättig
,
J. Chem. Phys.
145
,
234107
(
2016
).
72.
G.
Schmitz
and
C.
Hattig
,
J. Chem. Theory Comput.
13
,
2623
(
2017
).
73.
D. P.
Tew
and
C.
Hättig
,
Int. J. Quantum Chem.
113
,
224
(
2013
).
74.
M. S.
Frank
,
G.
Schmitz
, and
C.
Hättig
,
Mol. Phys.
115
,
343
(
2017
).
75.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
135
,
214106
(
2011
).
76.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
139
,
084114
(
2013
).
77.
B.
Helmich
and
C.
Hättig
, “
Excited states: From isolated molecules to complex environments
,”
Comput. Theor. Chem.
1040
,
35
(
2014
).
78.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2017
).
79.
D. G.
Liakos
,
M.
Sparta
,
M. K.
Kesharwani
,
J. M. L.
Martin
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
1525
(
2015
).
80.
T.
Crawford
and
R. A.
King
,
Chem. Phys. Lett.
366
,
611
(
2002
).
81.
K.
Ledermuller
and
M.
Schütz
,
J. Chem. Phys.
140
,
164113
(
2014
).
82.
C.
Peng
,
M. C.
Clement
, and
E. F.
Valeev
, preprint arXiv:1802.06738 (
2018
).
83.
R. A.
Mata
and
H.
Stoll
,
J. Chem. Phys.
134
,
034122
(
2011
).
84.
P.
Baudin
and
K.
Kristensen
,
J. Chem. Phys.
144
,
224106
(
2016
).
85.
S.
Höfener
and
W.
Klopper
,
Chem. Phys. Lett.
679
,
52
(
2017
).
86.
I.-M.
Hoyvik
,
R. H.
Myhre
, and
H.
Koch
,
J. Chem. Phys.
146
,
144109
(
2017
).
87.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
,
J. Chem. Phys.
146
,
194102
(
2017
).
88.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
145
,
034102
(
2016
).
89.
A. K.
Dutta
,
M.
Nooijen
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Theory Comput.
14
,
72
(
2017
).
90.
A.
Landau
,
K.
Khistyaev
,
S.
Dolgikh
, and
A. I.
Krylov
,
J. Chem. Phys.
132
,
014109
(
2010
).
91.
G.
Wälz
,
D.
Usvyat
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
144
,
084117
(
2016
).
92.
K.
Hirao
and
H.
Nakatsuji
,
J. Comput. Phys.
45
,
246
(
1982
).
93.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
144
,
034102
(
2016
).
94.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
95.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
96.
C.
Rittby
and
R.
Bartlett
,
Theor. Chim. Acta
80
,
469
(
1991
).
97.
R. M.
Richard
,
M. S.
Marshall
,
O.
Dolgounitcheva
,
J.
Ortiz
,
J.-L.
Brev́das
,
N.
Marom
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
12
,
595
(
2016
).
98.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
99.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
100.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
101.
R.
Izsák
and
F.
Neese
,
J. Chem. Phys.
135
,
144105
(
2011
).
102.
J.
Xue
,
S.
Uchida
,
B. P.
Rand
, and
S. R.
Forrest
,
Appl. Phys. Lett.
85
,
5757
(
2004
).
103.
D. L.
Lichtenberger
,
M. E.
Rempe
, and
S. B.
Gogosha
,
Chem. Phys. Lett.
198
,
454
(
1992
).
104.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).

Supplementary Material

You do not currently have access to this content.