In this work, a domain-based local pair natural orbital (DLPNO) version of the equation of motion coupled cluster theory with single and double excitations for ionization potentials (IP-EOM-CCSD) equations has been formulated and implemented. The method uses ground state localized occupied and pair natural virtual orbitals and applies the DLPNO machinery to arrive at a linear scaling implementation of the IP-EOM-CCSD method. The accuracy of the method is controllable using ground state truncation parameters. Using default thresholds, the method predicts ionization potential (IP) values with good accuracy (mean absolute error of 0.08 eV). We demonstrate that our code can be used to compute IP values for systems with more than 1000 atoms and 10 000 basis functions.
Skip Nav Destination
,
,
,
,
Article navigation
28 June 2018
Research Article|
June 22 2018
A near-linear scaling equation of motion coupled cluster method for ionized states
Achintya Kumar Dutta;
Achintya Kumar Dutta
a)
1
Max-Planck-Institut für Chemische Energiekonversion
, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
Search for other works by this author on:
Masaaki Saitow;
Masaaki Saitow
b)
1
Max-Planck-Institut für Chemische Energiekonversion
, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
Search for other works by this author on:
Christoph Riplinger;
Christoph Riplinger
2
FAccTs GmbH
, Rolandstrasse 67, 50677 Köln, Germany
Search for other works by this author on:
Frank Neese;
Frank Neese
c)
3
Max-Planck-Institut für Kohlenforschung
, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for other works by this author on:
Róbert Izsák
Róbert Izsák
d)
3
Max-Planck-Institut für Kohlenforschung
, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for other works by this author on:
Achintya Kumar Dutta
1,a)
Masaaki Saitow
1,b)
Christoph Riplinger
2
Frank Neese
3,c)
Róbert Izsák
3,d)
1
Max-Planck-Institut für Chemische Energiekonversion
, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
2
FAccTs GmbH
, Rolandstrasse 67, 50677 Köln, Germany
3
Max-Planck-Institut für Kohlenforschung
, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
a)
Present address: Indian Institute of Technology Bombay, Mumbai 400076, India.
b)
Present address: Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, 444-8585 Aichi, Japan.
c)
Electronic mail: [email protected]
d)
Electronic mail: [email protected]
J. Chem. Phys. 148, 244101 (2018)
Article history
Received:
March 14 2018
Accepted:
May 31 2018
Citation
Achintya Kumar Dutta, Masaaki Saitow, Christoph Riplinger, Frank Neese, Róbert Izsák; A near-linear scaling equation of motion coupled cluster method for ionized states. J. Chem. Phys. 28 June 2018; 148 (24): 244101. https://doi.org/10.1063/1.5029470
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
The Amsterdam Modeling Suite
Evert Jan Baerends, Nestor F. Aguirre, et al.
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
Light–matter interaction at the nano- and molecular scale
Kaifeng Wu, Chufeng Zhang, et al.
Related Content
A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states
J. Chem. Phys. (April 2019)
Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory
J. Chem. Phys. (September 2016)
A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory
J. Chem. Phys. (April 2017)
Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes
J. Chem. Phys. (August 2024)
Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory
J. Chem. Phys. (July 2018)