Simulation and data analysis have evolved into powerful methods for discovering and understanding molecular modes of action and designing new compounds to exploit these modes. The combination provides a strong impetus to create and exploit new tools and techniques at the interfaces between physics, biology, and data science as a pathway to new scientific insight and accelerated discovery. In this context, we explore the rational design of novel antimicrobial peptides (short protein sequences exhibiting broad activity against multiple species of bacteria). We show how datasets can be harvested to reveal features which inform new design concepts. We introduce new analysis and visualization tools: a graphical representation of the k-mer spectrum as a fundamental property encoded in antimicrobial peptide databases and a data-driven representation to illustrate membrane binding and permeation of helical peptides.

1.
D. A.
Reed
,
R.
Bajcsy
,
M. A.
Fernandez
,
J.-M.
Griffiths
,
R. D.
Mott
,
J.
Dongarra
,
C. R.
Johnson
,
A. S.
Inouye
,
W.
Miner
,
M. K.
Matzke
 et al., “
Computational science: Ensuring America’s competitiveness
,” Technical Report No. ADA462840,
Defense Technical Information Center
,
2005
.
2.
D. M.
Blei
and
P.
Smyth
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
8689
(
2017
).
3.
E. O.
Pyzer-Knapp
,
C.
Suh
,
R.
Gómez-Bombarelli
,
J.
Aguilera-Iparraguirre
, and
A.
Aspuru-Guzik
,
Annu. Rev. Mater. Res.
45
,
195
(
2015
).
4.
M.
Hay
,
D. W.
Thomas
,
J. L.
Craighead
,
C.
Economides
, and
J.
Rosenthal
,
Nat. Biotechnol.
32
,
40
(
2014
).
5.
A.
Robinson-Mosher
,
J.-H.
Chen
,
J.
Way
, and
P.
Silver
,
Biophys. J.
107
,
2456
(
2014
).
6.
D. W.
Borhani
and
D. E.
Shaw
,
J. Comput.-Aided Mol. Des.
26
,
15
(
2011
).
7.
R. E. W.
Hancock
and
H.-G.
Sahl
,
Nat. Biotechnol.
24
,
1551
(
2006
).
8.
H.
Jenssen
,
P.
Hamill
, and
R. E. W.
Hancock
,
Clin. Microbiol. Rev.
19
,
491
(
2006
).
9.
G.
Diamond
,
N.
Beckloff
,
A.
Weinberg
, and
K.
Kisich
,
Curr. Pharm. Des.
15
,
2377
(
2009
).
10.
A.
Pyne
,
M.-P.
Pfeil
,
I.
Bennett
,
J.
Ravi
,
P.
Iavicoli
,
B.
Lamarre
,
A.
Roethke
,
S.
Ray
,
H.
Jiang
,
A.
Bella
 et al.,
Chem. Sci.
8
,
1105
(
2017
).
11.
K. A.
Martemyanov
,
V. A.
Shirokov
,
O. V.
Kurnasov
,
A. T.
Gudkov
, and
A. S.
Spirin
,
Protein Expression Purif.
21
,
456
(
2001
).
12.
K.-H.
Lee
,
Y.-C.
Kwon
,
S. J.
Yoo
, and
D.-M.
Kim
,
Protein Expression Purif.
71
,
16
(
2010
).
13.
I.
Wiegand
,
K.
Hilpert
, and
R. E. W.
Hancock
,
Nat. Protoc.
3
,
163
(
2008
).
15.
M. G. J. L.
Habets
and
M. A.
Brockhurst
,
Biol. Lett.
8
,
416
(
2012
).
16.
J. Z.
Kubicek-Sutherland
,
H.
Lofton
,
M.
Vestergaard
,
K.
Hjort
,
H.
Ingmer
, and
D. I.
Andersson
,
J. Antimicrob. Chemother.
72
,
115
(
2016
).
17.
S.
Lata
,
B. K.
Sharma
, and
G. P. S.
Raghava
,
BMC Bioinf.
8
,
263
(
2007
).
18.
C. D.
Fjell
,
R. E. W.
Hancock
, and
A.
Cherkasov
,
Bioinformatics
23
,
1148
(
2007
).
19.
P.
Nilawe
,
S.
Karnik
,
V. K.
Jayaraman
,
S.
Joseph
, and
S.
Idicula-Thomas
,
IEEE/ACM Trans. Comput. Biol. Bioinf.
9
,
1535
(
2012
).
20.
S.
Thomas
,
S.
Karnik
,
R. S.
Barai
,
V. K.
Jayaraman
, and
S.
Idicula-Thomas
,
Nucleic Acids Res.
38
,
D774
(
2010
).
21.
N.
Thakur
,
A.
Qureshi
, and
M.
Kumar
,
Nucleic Acids Res.
40
,
W199
(
2012
).
22.
P. K.
Meher
,
T. K.
Sahu
,
V.
Saini
, and
A. R.
Rao
,
Sci. Rep.
7
,
D774
(
2017
).
23.
J.
Zhao
,
C.
Zhao
,
G.
Liang
,
M.
Zhang
, and
J.
Zheng
,
J. Chem. Inf. Model.
53
,
3280
(
2013
).
24.
X.
Periole
and
S.-J.
Marrink
,
Biomolecular Simulations
(
Humana Press
,
2012
), pp.
533
565
.
25.
S. J.
Marrink
and
D. P.
Tieleman
,
Chem. Soc. Rev.
42
,
6801
(
2013
).
26.
R.
Zou
,
X.
Zhu
,
Y.
Tu
,
J.
Wu
, and
M. P.
Landry
,
Biochemistry
57
,
2606
, (
2018
).
27.
The UniProt Consortium
,
Nucleic Acids Res.
45
,
D158
(
2016
); Accessed 23 February 2017.
28.
E.
Boutet
,
D.
Lieberherr
,
M.
Tognolli
,
M.
Schneider
, and
A.
Bairoch
,
Plant Bioinf.
406
,
89
(
2007
).
29.
S.
Kawashima
,
P.
Pokarowski
,
M.
Pokarowska
,
A.
Kolinski
,
T.
Katayama
, and
M.
Kanehisa
,
Nucleic Acids Res.
36
,
D202
(
2007
), version 9.2.
30.
D. E.
Newburger
and
M. L.
Bulyk
,
Nucleic Acids Res.
37
,
D77
(
2009
).
31.
A.
Abnousi
,
S. L.
Broschat
, and
A.
Kalyanaraman
, in
Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics, BCB’15
(
ACM
,
Atlanta, Georgia
,
2015
), pp.
597
606
.
32.
C.
Fletez-Brant
,
D.
Lee
,
A. S.
McCallion
, and
M. A.
Beer
,
Nucleic Acids Res.
41
,
W544
(
2013
).
33.
M.
Ghandi
,
D.
Lee
,
M.
Mohammad-Noori
, and
M. A.
Beer
,
PLoS Comput. Biol.
10
,
e1003711
(
2014
).
34.
D. A.
Durai
and
M. H.
Schulz
,
Bioinformatics
32
,
1670
(
2016
).
35.
G.
Salton
and
C.
Buckley
,
Inf. Process. Manage.
24
,
513
(
1988
).
36.
Y.
Cong
,
Y.-b.
Chan
, and
M. A.
Ragan
,
Sci. Rep.
6
,
29319
(
2016
).
37.
Y.
Cong
,
Y.-b.
Chan
, and
M. A.
Ragan
,
Sci. Rep.
6
,
30308
(
2016
).
38.
Y.
Cong
,
Y.-b.
Chan
,
C. A.
Phillips
,
M. A.
Langston
, and
M. A.
Ragan
,
Front. Microbiol.
8
,
21
(
2017
).
39.
G.
Bernard
,
C. X.
Chan
,
Y.-b.
Chan
,
X.-Y.
Chua
,
Y.
Cong
,
J. M.
Hogan
,
S. R.
Maetschke
, and
M. A.
Ragan
,
Briefings Bioinf.
2017
,
bbx067
.
40.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
,
APL Mater.
1
,
011002
(
2013
).
41.
J.
Hachmann
,
R.
Olivares-Amaya
,
S.
Atahan-Evrenk
,
C.
Amador-Bedolla
,
R. S.
Sánchez-Carrera
,
A.
Gold-Parker
,
L.
Vogt
,
A. M.
Brockway
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. Lett.
2
,
2241
(
2011
).
42.
B.
Huskinson
,
M. P.
Marshak
,
C.
Suh
,
S.
Er
,
M. R.
Gerhardt
,
C. J.
Galvin
,
X.
Chen
,
A.
Aspuru-Guzik
,
R. G.
Gordon
, and
M. J.
Aziz
,
Nature
505
,
195
(
2014
).
43.
S.
Chakraborty
,
W.
Xie
,
N.
Mathews
,
M.
Sherburne
,
R.
Ahuja
,
M.
Asta
, and
S. G.
Mhaisalkar
,
ACS Energy Lett.
2
,
837
(
2017
).
44.
R.
Menichetti
,
K. H.
Kanekal
,
K.
Kremer
, and
T.
Bereau
,
J. Chem. Phys.
147
,
125101
(
2017
).
45.
M. S. P.
Sansom
,
K. A.
Scott
, and
P. J.
Bond
,
Biochem. Soc. Trans.
36
,
27
(
2008
).
46.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
47.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
48.
M.
Javanainen
and
H.
Martinez-Seara
,
Biochim. Biophys. Acta, Biomembr.
1858
,
2468
(
2016
).
49.
C.
Maffeo
,
S.
Bhattacharya
,
J.
Yoo
,
D.
Wells
, and
A.
Aksimentiev
,
Chem. Rev.
112
,
6250
(
2012
).
50.
P. D.
Rakowska
,
H.
Jiang
,
S.
Ray
,
A.
Pyne
,
B.
Lamarre
,
M.
Carr
,
P. J.
Judge
,
J.
Ravi
,
U. I. M.
Gerling
,
B.
Koksch
,
G. J.
Martyna
,
B. W.
Hoogenboom
,
A.
Watts
,
J.
Crain
,
C. R. M.
Grovenor
, and
M. G.
Ryadnov
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
8918
(
2013
).
51.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
,
J. Comput. Chem.
29
,
1859
(
2008
).
52.
Schrödinger LLC
, The PyMOL Molecular Graphics System, version 1.8,
2015
.
53.
R.
Gamini
and
D.
Chandler
, “
Residue-based coarse graining using MARTINI force field in NAMD
,” in
Computational Biophysics Workshop
,
2013
.
54.
W. F. D.
Bennett
,
C. K.
Hong
,
Y.
Wang
, and
D. P.
Tieleman
,
J. Chem. Theory Comput.
12
,
4524
(
2016
).
55.
L.
Fan
,
J.
Sun
,
M.
Zhou
,
J.
Zhou
,
X.
Lao
,
H.
Zheng
, and
H.
Xu
,
Sci. Rep.
6
,
24482
(
2016
).
56.
M. R.
Zadkarami
,
J. Appl. Sci.
8
,
2991
(
2008
).
57.
J.
Kyte
and
R. F.
Doolittle
,
J. Mol. Biol.
157
,
105
(
1982
).
58.
M.
Schiffer
and
A. B.
Edmundson
,
Biophys. J.
7
,
121
(
1967
).
59.
S.
Sandiford
and
M.
Upton
,
Antimicrob. Agents Chemother.
56
,
1539
(
2011
).
60.
F.
Martelli
,
H.-Y.
Ko
,
E. C.
Oguz
, and
R.
Car
,
Phys. Rev. B
97
,
064105
(
2018
).
61.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
62.
S.-J.
Kang
,
H.-S.
Won
,
W.-S.
Choi
, and
B.-J.
Lee
,
J. Pept. Sci.
15
,
583
(
2009
).
63.
B.
Mishra
and
G.
Wang
,
J. Am. Chem. Soc.
134
,
12426
(
2012
).
You do not currently have access to this content.