We incorporate in the Kohn-Sham self-consistent equation a trained neural-network projection from the charge density distribution to the Hartree-exchange-correlation potential nVHxc for a possible numerical approach to the exact Kohn-Sham scheme. The potential trained through a newly developed scheme enables us to evaluate the total energy without explicitly treating the formula of the exchange-correlation energy. With a case study of a simple model, we show that the well-trained neural-network VHxc achieves accuracy for the charge density and total energy out of the model parameter range used for the training, indicating that the property of the elusive ideal functional form of VHxc can approximately be encapsulated by the machine-learning construction. We also exemplify a factor that crucially limits the transferability—the boundary in the model parameter space where the number of the one-particle bound states changes—and see that this is cured by setting the training parameter range across that boundary. The training scheme and insights from the model study apply to more general systems, opening a novel path to numerically efficient Kohn-Sham potential.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
M.
Levy
, “
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem
,”
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
6065
(
1979
).
4.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
5.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
6.
A. D.
Becke
, “
A new mixing of Hartree-Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
7.
G. E.
Scuseria
and
V. N.
Staroverov
, “
Chapter 24-progress in the development of exchange-correlation functionals
,” in
Theory and Applications of Computational Chemistry
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), pp.
669
724
.
8.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
60
(
2008
).
9.
R.
Peverati
and
D. G.
Truhlar
, “
Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics
,”
Philos. Trans. R. Soc., A
372
,
20120476
(
2014
).
10.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
11.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
12.
K.
Kim
and
K. D.
Jordan
, “
Comparison of density functional and MP2 calculations on the water monomer and dimer
,”
J. Phys. Chem.
98
,
10089
10094
(
1994
).
13.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
14.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
15.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
16.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
17.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
, “
Density functional theory is straying from the path toward the exact functional
,”
Science
355
,
49
52
(
2017
).
18.
K. P.
Kepp
, “
Comment on ‘density functional theory is straying from the path toward the exact functional
,’”
Science
356
,
496
(
2017
).
19.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
, “
Understanding and reducing errors in density functional calculations
,”
Phys. Rev. Lett.
111
,
073003
(
2013
).
20.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
, “
From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies
,”
Phys. Rev. A
50
,
2138
2142
(
1994
).
21.
Q.
Wu
and
W.
Yang
, “
A direct optimization method for calculating density functionals and exchange-correlation potentials from electron densities
,”
J. Chem. Phys.
118
,
2498
2509
(
2003
).
22.
L. O.
Wagner
,
E. M.
Stoudenmire
,
K.
Burke
, and
S. R.
White
, “
Guaranteed convergence of the Kohn-Sham equations
,”
Phys. Rev. Lett.
111
,
093003
(
2013
).
23.
L. O.
Wagner
,
T. E.
Baker
,
E. M.
Stoudenmire
,
K.
Burke
, and
S. R.
White
, “
Kohn-Sham calculations with the exact functional
,”
Phys. Rev. B
90
,
045109
(
2014
).
24.
K.
Hornik
, “
Approximation capabilities of multilayer feedforward networks
,”
Neural Networks
4
,
251
257
(
1991
).
25.
G.
Cybenko
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control. Signals Syst.
2
,
303
(
1989
).
26.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
, “
Finding density functionals with machine learning
,”
Phys. Rev. Lett.
108
,
253002
(
2012
).
27.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
, “
Bypassing the Kohn-Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
28.
L.
Li
,
T. E.
Baker
,
S. R.
White
, and
K.
Burke
, “
Pure density functional for strong correlation and the thermodynamic limit from machine learning
,”
Phys. Rev. B
94
,
245129
(
2016
).
29.
M.
Levy
and
F.
Zahariev
, “
Ground-state energy as a simple sum of orbital energies in Kohn-Sham theory: A shift in perspective through a shift in potential
,”
Phys. Rev. Lett.
113
,
113002
(
2014
).
30.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
31.

The long range part of the interaction was truncated within |x1x2| < 2, whereas we approximated 1/|x1x2| by a large value at the singularity x1 = x2.

32.
E. S.
Kadantsev
and
M. J.
Stott
, “
Variational method for inverting the Kohn-Sham procedure
,”
Phys. Rev. A
69
,
012502
(
2004
).
33.
W.
Mattew
and
C.
Foulkes
, “
Tight-binding models and density-functional theory
,”
Phys. Rev. B
39
,
12520
(
1989
).
34.
X.
Glorot
,
A.
Bordes
, and
Y.
Bengio
, “
Deep sparse rectifier neural networks
,” in
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS)
,
2011
.
35.
D. P.
Kingma
and
J. L.
Ba
, “
Adam: A method for stochastic optimization
,”
published as a conference paper at ICLR 2015
,
2015
; e-print arXiv:1412.6980.
36.

Two sets of 1000 training data were generated for Ntot = 1 and 2.

37.
See https://chainer.org/ for Chainer.
38.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
(
1986
).
You do not currently have access to this content.