We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.

1.
S.
Curtarolo
 et al.,
Nat. Mater.
12
,
191
201
(
2013
).
2.
J.
Hafner
,
C.
Wolverton
, and
G.
Ceder
,
MRS Bull.
31
,
659
668
(
2006
).
3.
K.
Takayanagi
,
Y.
Tanishiro
,
S.
Takahashi
, and
M.
Takahashi
,
Surf. Sci.
164
,
367
(
1985
).
4.
K. C.
Low
and
C. K.
Ong
,
Phys. Rev. B
50
,
5352
5357
(
1994
).
5.
U.
Diebold
,
Surf. Sci. Rep.
48
,
53
229
(
2002
).
6.
M.
Lazzeri
and
A.
Selloni
,
Phys. Rev. Lett.
87
,
266105
(
2001
).
7.
X.
Gong
,
N.
Khorshidi
,
A.
Stierle
,
V.
Vonk
,
C.
Ellinger
,
H.
Dosch
,
H.
Cheng
,
A.
Selloni
,
Y.
He
,
O.
Dulub
, and
U.
Diebold
,
Surf. Sci.
603
,
138
144
(
2009
).
8.
R.
Bechstein
,
H. H.
Kristoffersen
,
L. B.
Vilhelmsen
,
F.
Rieboldt
,
J.
Stausholm-Møller
,
S.
Wendt
,
B.
Hammer
, and
F.
Besenbacher
,
Phys. Rev. Lett.
108
,
236103
(
2012
).
9.
C. J.
Pickard
and
R. J.
Needs
,
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
10.
D. J.
Wales
,
J. Phys. Chem. A.
101
,
5111
(
1997
).
11.
R. L.
Johnston
,
Dalton Trans.
22
,
4193
(
2003
).
12.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
13.
S.
Bhattacharya
,
S. V.
Levchenko
,
L. M.
Ghiringhelli
, and
M.
Scheffler
,
Phys. Rev. Lett.
111
,
135501
(
2013
).
14.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
15.
M. S.
Jørgensen
,
U. F.
Larsen
,
K. W.
Jacobsen
, and
B.
Hammer
,
J. Phys. Chem. A
122
,
1504
(
2018
).
16.
T.
Yamashita
,
N.
Sato
,
H.
Kino
,
T.
Miyake
,
K.
Tsuda
, and
T.
Oguchi
,
Phys. Rev. Mater
2
,
013803
(
2018
).
17.
G.
Dolgonos
,
B.
Aradi
,
N. H.
Moreira
, and
T.
Frauenheim
,
J. Chem. Theory Comput.
6
,
266
278
(
2010
).
18.
D.
Selli
,
G.
Fazio
,
G.
Seifert
, and
C. D.
Valentin
,
J. Chem. Theory Comput.
13
,
3862
3873
(
2017
).
19.
D.
Selli
,
G.
Fazio
, and
C. D.
Valentin
,
J. Chem. Phys.
147
,
164701
(
2017
).
20.
A. H.
Larsen
 et al.,
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
21.
L. B.
Vilhelmsen
and
B.
Hammer
,
Phys. Rev. Lett.
108
,
126101
(
2012
).
22.
L. B.
Vilhelmsen
and
B.
Hammer
,
J. Chem. Phys.
141
,
044711
(
2014
).
23.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
24.
A. P.
Bartok
,
R.
Kondor
, and
G.
Csanyi
,
Phys. Rev. B
87
,
184115
(
2013
).
25.
K.
Hansen
 et al.,
J. Chem. Theory Comput.
9
,
3404
3419
(
2013
).
26.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
,
Phys. Rev. Lett.
114
,
096405
(
2015
).
27.
V.
Botu
and
R.
Ramprasad
,
Int. J. Quantum Chem.
115
,
1074
1083
(
2015
).
28.
A.
Khorshidi
and
A. A.
Peterson
,
Comput. Phys. Commun.
207
,
310
(
2016
).
29.
H.
Zhai
and
A. N.
Alexandrova
,
J. Chem. Theory Comput.
12
,
6213
6226
(
2016
).
30.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
8
,
13890
(
2017
).
31.
K.
Yao
,
J. E.
Herr
,
S. N.
Brown
, and
J.
Parkhill
,
J. Phys. Chem. Lett.
8
,
2689
(
2017
).
32.
T. K.
Patra
,
V.
Meenakshisundaram
,
J.-H.
Hung
, and
D. S.
Simmons
,
ACS Comb. Sci.
19
,
96
(
2017
).
33.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
6
,
2326
2331
(
2015
).
34.
A. R.
Oganov
and
M.
Valle
,
J. Chem. Phys.
130
,
104504
(
2009
).
35.
T. L.
Jacobsen
,
M. S.
Jørgensen
, and
B.
Hammer
,
Phys. Rev. Lett.
120
,
026102
(
2018
).
36.
J. E.
Moussa
,
Phys. Rev. Lett.
109
,
059801
(
2012
).
37.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
109
,
059802
(
2012
).
38.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
39.
B.
Huang
and
O. A.
von Lilienfeld
,
J. Chem. Phys.
145
,
161102
(
2016
).
40.
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
13
,
5255
5264
(
2017
).
41.
K. M.
Gilbert
and
C. A.
Venanzi
,
J. Comput.-Aided Mol. Des.
20
,
209
225
(
2006
).
42.
L. L.
Duan
,
Y.
Mei
,
D.
Zhang
,
Q. G.
Zhang
, and
J. Z. H.
Zhang
,
J. Am. Chem. Soc.
132
,
11159
11164
(
2010
).
43.
D.
Chema
and
A.
Goldblum
,
J. Chem. Inf. Comput. Sci.
43
,
208
217
(
2003
).
44.
M. S.
Jørgensen
,
M. N.
Groves
, and
B.
Hammer
,
J. Chem. Theory Comput.
13
,
1486
1493
(
2017
).
45.
M. K.
Pakhira
, “
A modified k-means algorithm to avoid empty clusters
,”
Int. J. Recent Trends Eng.
1
(
1
),
220
226
(
2009
).
46.
D.
Arthur
and
S.
Vassilvitskii
, “
K-means++: The advantages of careful seeding
,” in
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(
ACM
,
2007
).
You do not currently have access to this content.