We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant “solid harmonic scattering coefficients” that account for different types of interactions at different scales. Multilinear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state-of-the-art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable.

1.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
(
1
),
291
352
(
2007
).
2.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
3.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
4.
B. G.
Sumpter
and
D. W.
Noid
, “
Neural networks and graph theory as computational tools for predicting polymer properties
,”
Macromol. Theory Simul.
3
(
2
),
363
378
(
1994
).
5.
S.
Manzhos
,
X.
Wang
,
R.
Dawes
, and
T.
Carrington
, “
A nested molecule-independent neural network approach for high-quality potential fits
,”
J. Phys. Chem. A
110
(
16
),
5295
5304
(
2006
).
6.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
(
14
),
146401
(
2007
).
7.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
(
7
),
074106
(
2011
).
8.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
(
13
),
136403
(
2010
).
9.
A.
Sadeghi
,
S. A.
Ghasemi
,
B.
Schaefer
,
S.
Mohr
,
M. A.
Lill
, and
S.
Goedecker
, “
Metrics for measuring distances in configuration spaces
,”
J. Chem. Phys.
139
(
18
),
184118
(
2013
).
10.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
(
18
),
184115
(
2013
).
11.
W. J.
Szlachta
,
A. P.
Bartók
, and
G.
Csányi
, “
Accuracy and transferability of Gaussian approximation potential models for tungsten
,”
Phys. Rev. B
90
(
10
),
104108
(
2014
).
12.
Z.
Li
,
J. R.
Kermode
, and
A. D.
Vita
, “
Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
,”
Phys. Rev. Lett.
114
,
096405
(
2015
).
13.
L.
Zhu
,
M.
Amsler
,
T.
Fuhrer
,
B.
Schaefer
,
S.
Faraji
,
S.
Rostami
,
S. A.
Ghasemi
,
A.
Sadeghi
,
M.
Grauzinyte
,
C.
Wolverton
, and
S.
Goedecker
, “
A fingerprint based metric for measuring similarities of crystalline structures
,”
J. Chem. Phys.
144
(
3
),
034203
(
2016
).
14.
A.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
(
3
),
1153
1173
(
2016
).
15.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
(
5
),
e1603015
(
2017
).
16.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
(
5
),
058301
(
2012
).
17.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Assessment and validation of machine learning methods for predicting molecular atomization energies
,”
J. Chem. Theory Comput.
9
(
8
),
3404
3419
(
2013
).
18.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
19.
R.
Ramakrishnan
,
M.
Hartmann
,
E.
Tapavicza
, and
O. A.
von Lilienfeld
, “
Electronic spectra from TDDFT and machine learning in chemical space
,”
J. Chem. Phys.
143
,
084111
(
2015
).
20.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
,”
J. Phys. Chem. Lett.
6
,
2326
2331
(
2015)
.
21.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
, “
Comparing molecules and solids across structural and alchemical space
,”
Phys. Chem. Chem. Phys.
18
(
20
),
13754
13769
(
2016
).
22.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
); e-print arXiv:1609.08259.
23.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
Proceedings of the 34th International Conference on Machine Learning
,
Sydney, Australia
,
2017
.
24.
K. T.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in
Advances in Neural Information Processing Systems 30 (NIPS)
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
NIPS
,
2017
), pp.
992
1002
.
25.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
, “
Quantum chemistry structures and properties of 134 kilo molecules
,”
Sci. Data
1
,
140022
(
2014
).
26.
M.
Hirn
,
S.
Mallat
, and
N.
Poilvert
, “
Wavelet scattering regression of quantum chemical energies
,”
Multiscale Model. Simul.
15
(
2
),
827
863
(
2017
); e-print arXiv:1605.04654.
27.
M.
Eickenberg
,
G.
Exarchakis
,
M.
Hirn
, and
S.
Mallat
, “
Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3D electronic densities
,” in
Neural Information Processing Systems (NIPS)
,
2017
.
28.
S.
Mallat
, “
Group invariant scattering
,”
Commun. Pure Appl. Math.
65
(
10
),
1331
1398
(
2012
).
29.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
, “
WACSF-weighted atom-centered symmetry functions as descriptors in machine learning potentials
,”
J. Chem. Phys.
148
(
24
),
241709
(
2018
); e-print arXiv:1712.05861 (submitted).
30.
M.
Reisert
and
H.
Burkhardt
, “
Harmonic filters for generic feature detection in 3D
,” in
Pattern Recognition. DAGM 2009
, Lecture Notes in Computer Science (
Springer
,
Berlin, Heidelberg
,
2009
), Vol. 5748.
31.
S. F.
Boys
, “
Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system
,”
Proc. R. Soc. London, Ser. A
200
(
1063
),
542
554
(
1950
).
32.
F.
London
, “
The general theory of molecular forces
,”
Trans. Faraday Soc.
33
,
8
26
(
1937
).
33.
R.
Memisevic
, “
Gradient-based learning of higher-order image features
,” in
2011 IEEE International Conference on Computer Vision (ICCV)
(
IEEE
,
2011
), pp.
1591
1598
.
34.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
3rd International Conference for Learning Representations
,
San Diego, CA, USA
,
2015
.
You do not currently have access to this content.